气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (3): 317-328.doi: 10.12006/j.issn.1673-1719.2020.210
方佳毅1,2,3(), 殷杰1,2,3, 石先武4, 方建5, 杜士强6, 刘敏1,2,3
收稿日期:
2020-09-14
修回日期:
2020-11-15
出版日期:
2021-05-30
发布日期:
2021-06-01
作者简介:
方佳毅,女,助理研究员, 基金资助:
FANG Jia-Yi1,2,3(), YIN Jie1,2,3, SHI Xian-Wu4, FANG Jian5, DU Shi-Qiang6, LIU Min1,2,3
Received:
2020-09-14
Revised:
2020-11-15
Online:
2021-05-30
Published:
2021-06-01
摘要:
沿海地区频繁遭受洪水灾害,往往并非单一灾种驱动,而是多种致灾因子相互影响的综合结果。文中梳理了沿海地区复合洪水的主要驱动机理,归纳了复合洪水危险性研究中统计模型和动力数值模型两类主要研究方法,并分别阐述了近年来主要进展。复合洪水是极端高潮位(包括天文潮位、风暴潮和海浪)、河流洪水和强降水过程的两两组合或者是三者同时发生。基于统计模型的复合洪水危险性研究主要致力于各致灾变量的关联性分析和联合概率建模,可较好理解大尺度上复合洪水的时空变化,以及和气候因素之间的关系,其研究难点和未来趋势是构建非一致假设下二维以上的复合洪水统计模型。基于水动力数值模型的复合洪水淹没模拟需要水文、海洋和水力等多个模型耦合以及大气气象要素(台风过程、风场、气压场)作为重要边界条件,建模过程较复杂,计算耗时长,对计算水平要求高,但可较好地刻画复合洪水的演变过程,并便于未来情景分析。未来需要重视沿海地区复合洪水致灾成害机理的研究。在气象海洋预报业务服务方面,建议加强沿海地区复合洪水监测与预警技术方法研究,对沿海地区复合洪水过程全方面多角度监测,进行动力框架改进、物理过程参数化优化和资料同化,提高模式网格分辨率,优化集合预报方案。最后,亟需探究未来气候变化及人类活动对复合洪水危险性的综合影响。
方佳毅, 殷杰, 石先武, 方建, 杜士强, 刘敏. 沿海地区复合洪水危险性研究进展[J]. 气候变化研究进展, 2021, 17(3): 317-328.
FANG Jia-Yi, YIN Jie, SHI Xian-Wu, FANG Jian, DU Shi-Qiang, LIU Min. A review of compound flood hazard research in coastal areas[J]. Climate Change Research, 2021, 17(3): 317-328.
图3 单向性复合洪水模拟流程图
Fig. 3 Flowchart of one-way coupled compound flood inundation modelling (a) represented by a hydrological model, (b) represented by an oceanology model, (c) represented by a hydraulic mode
[1] | Small C, Nicholls R. A global analysis of human settlement in coastal zones[J]. Journal of Coastal Research, 2003,19(3):584-599 |
[2] |
Hallegatte S, Green C, Nicholls R J, et al. Future flood losses in major coastal cities[J]. Nature Climate Change, 2013,3(9):802-806
doi: 10.1038/nclimate1979 URL |
[3] |
Hanson S, Nicholls R, Ranger N, et al. A global ranking of port cities with high exposure to climate extremes[J]. Climatic Change, 2011,104(1):89-111
doi: 10.1007/s10584-010-9977-4 URL |
[4] |
Lichter M, Vafeidis A T, Nicholls R J, et al. Exploring data-related uncertainties in analyses of land area and population in the “Low-Elevation Coastal Zone” (LECZ)[J]. Journal of Coastal Research, 2010,27(4):757-768
doi: 10.2112/JCOASTRES-D-10-00072.1 URL |
[5] |
McGranahan G, Balk D, Anderson B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones[J]. Environment and Urbanization, 2007,19(1):17-37
doi: 10.1177/0956247807076960 URL |
[6] |
Liu J, Wen J, Huang Y, et al. Human settlement and regional development in the context of climate change: a spatial analysis of low elevation coastal zones in China[J]. Mitigation and Adaptation Strategies for Global Change, 2015,20(4):527-546
doi: 10.1007/s11027-013-9506-7 URL |
[7] | 蔡榕硕, 谭红建. 海平面加速上升对低海拔岛屿、沿海地区及社会的影响和风险[J]. 气候变化研究进展, 2020,16(2):163-171. |
Cai R S, Tan H J. Key points on the sea level rise and implications for low lying islands, coasts and communities from the IPCC special report on the ocean and cryosphere in a changing climate[J]. Climate Change Research, 2020,16(2):163-171 (in Chinese) | |
[8] | Fang J, Liu W, Yang S, et al. Spatial-temporal changes of coastal and marine disasters risks and impacts in Mainland China[J]. Ocean & Coastal Management, 2017,139:125-140 |
[9] |
Rappaport E N. Fatalities in the United States from Atlantic tropical cyclones: new data and interpretation[J]. Bulletin of the American Meteorological Society, 2014,95(3):341-346
doi: 10.1175/BAMS-D-12-00074.1 URL |
[10] |
Hu P, Zhang Q, Shi P, et al. Flood-induced mortality across the globe: spatiotemporal pattern and influencing factors[J]. Science of the Total Environment, 2018,643:171-182
doi: 10.1016/j.scitotenv.2018.06.197 URL |
[11] | 吴吉东, 傅宇, 张洁, 等. 1949—2013年中国气象灾害灾情变化趋势分析[J]. 自然资源学报, 2014,29(9):1520-1530. |
Wu J D, Fu Y, Zhang J, et al. Meteorological disaster trend analysis in China: 1949-2013[J]. Journal of Natural Resources, 2014,29(9):1520-1530 (in Chinese) | |
[12] |
Fang J, Lincke D, Brown S, et al. Coastal flood risks in China through the 21st century: an application of DIVA[J]. Science of the Total Environment, 2020,704:135311
doi: 10.1016/j.scitotenv.2019.135311 URL |
[13] |
Leonard M, Westra S, Phatak A, et al. A compound event framework for understanding extreme impacts[J]. Wiley Interdisciplinary Reviews: Climate Change, 2014,5(1):113-128
doi: 10.1002/wcc.2014.5.issue-1 URL |
[14] | Kappes M S, Keiler M, von Elverfeldt K, et al. Challenges of analyzing multi-hazard risk: a review[J]. Natural Hazards, 2012,64(2):1925-1958 |
[15] | Gill J C, Malamud B D. Reviewing and visualizing the interactions of natural hazards[J]. Reviews of Geophysics, 2014,52(4):680-722 |
[16] | Tilloy A, Malamud B D, Winter H, et al. A review of quantification methodologies for multi-hazard interrelationships[J]. Earth-Science Reviews, 2019: 102881 |
[17] | 孙志林, 黄森军, 焦建格, 等. 河口区径流对台风暴潮影响研究[J]. 天津大学学报: 自然科学与工程技术版, 2017,50(5):519-526. |
Sun Z L, Huang S J, Jiao J G, et al. Effect of runoff on typhoon storm surge in estuaries[J]. Journal of Tianjin University: Science and Technology, 2017,50(5):519-526 (in Chinese) | |
[18] | 王璐阳, 张敏, 温家洪, 等. 上海复合极端风暴洪水淹没模拟[J]. 水科学进展, 2019,30(4):546-555. |
Wang L Y, Zhang M, Wen J H, et al. Simulation of extreme compound coastal flooding in Shanghai[J]. Advances in Water Science, 2019,30(4):546-555 (in Chinese) | |
[19] | Zscheischler J, Westra S, van Den Hurk B J J M, et al. Future climate risk from compound events[J]. Nature Climate Change, 2018,8(6):469-477 |
[20] | IPCC. IPCC special report on the ocean and cryosphere in a changing climate [M]. Cambridge: Cambridge University Press, 2019 |
[21] | 史培军, 吕丽莉, 汪明, 等. 灾害系统:灾害群、灾害链、灾害遭遇[J]. 自然灾害学报, 2014,23(6):1-11. |
Shi P J, Lv L P, Wang M, et al. Disaster system: disaster cluster, disaster chain and disaster compound[J]. Journal of Natural Disasters, 2014,23(6):1-11 (in Chinese) | |
[22] | 方佳毅, 史培军. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019,38(5):625-636. |
Fang J Y, Shi P J. A review of coastal flood risk research under global climate change[J]. Progress in Geography, 2019,38(5):625-636 (in Chinese) | |
[23] | 刘家宏, 王浩, 高学睿, 等. 城市水文学研究综述[J]. 科学通报, 2014,59(36):3581-3590. |
Liu J H, Wang H, Gao X R, et al. Review on urban hydrology[J]. China Science Bulletin, 2014,59(36):3581-3590 (in Chinese) | |
[24] | 宋晓猛, 张建云, 王国庆, 等. 变化环境下城市水文学的发展与挑战. II. 城市雨洪模拟与管理[J]. 水科学进展, 2014,25(5):752-764. |
Song X M, Zhang J Y, Wang G Q, et al. Development and challenges of urban hydrology in a changing environment. II. Urban stormwater modeling and management[J]. Advances in Water Science, 2014,25(5):752-764 (in Chinese) | |
[25] | 郭生练, 闫宝伟, 肖义, 等. Copula函数在多变量水文分析计算中的应用及研究进展[J]. 水文, 2008 (3):1-7. |
Guo S L, Yan B W, Xiao Y, et al. Multivariate hydrological analysis and estimation[J]. Journal of China Hydrology, 2008 (3):1-7 (in Chinese) | |
[26] | Nelsen R B. An introduction to copulas[M]. Springer: Science & Business Media, 2007 |
[27] | Zhang Q, Xiao M, Singh V P, et al. Copula-based risk evaluation of hydrological droughts in the East River basin, China[J]. Stochastic Environmental Research and Risk Assessment, 2013,27(6):1397-1406 |
[28] | Sadegh M, Moftakhari H, Gupta H V, et al. Multihazard scenarios for analysis of compound extreme events[J]. Geophysical Research Letters, 2018,45(11):5470-5480 |
[29] | Sadegh M, Ragno E, AghaKouchak A. Multivariate Copula Analysis Toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework[J]. Water Resources Research, 2017,53(6):5166-5183 |
[30] | 刘曾美, 吴俊校, 陈子燊. 感潮地区暴雨和潮水位遭遇组合的涝灾风险[J]. 武汉大学学报: 工学版, 2010,43(2):166-169, 174. |
Liu Z M, Wu J X, Chen Z S. Waterlogging risk based on encounter of rainstorm and tidewater level in tide-influenced area[J]. Engineering Journal of Wuhan University, 2010,43(2):166-169, 174 (in Chinese) | |
[31] | 任锦亮, 李琼芳, 李鹏程, 等. 上海市台风降雨和潮位遭遇组合概率研究[J]. 水电能源科学, 2013,31(7):1-4. |
Ren J L, Li Q F, Li P C, et al. Joint probability investigation of encounter typhoon rainfall and tide level in Shanghai city[J]. Water Resources and Power, 2013,31(7):1-4 (in Chinese) | |
[32] | 武传号, 黄国如, 吴思远. 基于Copula函数的广州市短历时暴雨与潮位组合风险分析[J]. 水力发电学报, 2014,33(2):33-40. |
Wu C H, Huang G R, Wu S Y. Risk analysis of combinations of short duration rainstorm and tidal level in Guangzhou based on Copula function[J]. Journal of Hydroelectric Engineering, 2014,33(2):33-40 (in Chinese) | |
[33] | 黄锦林, 范嘉炜, 唐造造. 基于最大熵-Copula方法的降雨潮位关联性分析: 以广州为例[J]. 灾害学, 2017,32(1):65-71. |
Huang J L, Fan J W, Tang Z Z. Correlation study of rainstorm and tidal level using the maximum entropy-copula method: a case study of Guangzhou[J]. Journal of Catastrophology, 2017,32(1):65-71 (in Chinese) | |
[34] | 范嘉炜, 黄锦林. 基于Kendall重现期的降雨潮位风险分析[J]. 水电能源科学, 2017,35(5):21-24, 20. |
Fan J W, Huang J L. Risk analysis of rainstorm and tidal level based on Kendall return period[J]. Water Resources and Power, 2017,35(5):21-24, 20 (in Chinese) | |
[35] | 陈子燊, 黄强, 刘曾美. 基于非对称Archimedean Copula的三变量洪水风险评估[J]. 科学进展, 2016,27(5):763-771. |
Chen Z S, Huang Q, Liu Z M. Risk assessment of trivariate flood based on asymmetric Archimedean Copulas[J]. Advances in Water Science, 2016,27(5):763-771 (in Chinese) | |
[36] | 陈子燊, 刘占明, 赵青. 洪水峰量联合分布的4种重现水平对比[J]. 中山大学学报: 自然科学版, 2018,57(1):130-135. |
Chen Z S, Liu Z M, Zhao Q. Comparative analysis on four recurrence levels of joint distribution of flood peak discharge and volume[J]. Journal of Sun Yatsen University: Natural Science Edition, 2018,57(1):130-135 (in Chinese) | |
[37] | Lian J, Xu K, Ma C. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou city, China[J]. Hydrology and Earth System Sciences, 2013,17(2):679 |
[38] | Xu K, Ma C, Lian J, et al. Joint probability analysis of extreme precipitation and storm tide in a coastal city under changing environment[J]. PloS One, 2014,9(10):e109341 |
[39] | Zheng F, Westra S, Leonard M, et al. Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk[J]. Water Resources Research, 2014,50(3):2050-2071 |
[40] | Wahl T, Jain S, Bender J, et al. Increasing risk of compound flooding from storm surge and rainfall for major US cities[J]. Nature Climate Change, 2015,5(12):1093-1097 |
[41] | Wu W, McInnes K, O′grady J, et al. Mapping dependence between extreme rainfall and storm surge[J]. Journal of Geophysical Research: Oceans, 2018,123(4):2461-2474 |
[42] | Petroliagkis T I, Voukouvalas E, Disperati J, et al. Joint probabilities of storm surge, significant wave height and river discharge components of coastal flooding events [R]. Italia: European Commission-JRC Technical Reports,Publications Office of the European Union, 2016 |
[43] | Moftakhari H, Salvadori G, AghaKouchak A, et al. Compounding effects of sea level rise and fluvial flooding[J]. Proceedings of the National Academy of Sciences, 2017,114(37):9785-9790 |
[44] | Ai P, Yuan D, Xiong C. Copula-based joint probability analysis of compound floods from rainstorm and typhoon surge: a case study of Jiangsu coastal areas, China[J]. Sustainability, 2018,10(7):2232 |
[45] | Ward P J, Couasnon A, Eilander D, et al. Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries[J]. Environmental Research Letters, 2018,13(8):084012 |
[46] | Bevacqua E, Maraun D, Vousdoukas M I, et al. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change[J]. Science Advances, 2019,5(9):eaaw5531 |
[47] | Khanal S, Ridder N, Terink W, et al. Storm surge and extreme river discharge: a compound event analysis using ensemble impact modelling[J]. Frontiers in Earth Science, 2019,7:224 |
[48] | Hendry A, Haigh I, Nicholls R, et al. Assessing the characteristics and drivers of compound flooding events around the UK coast[J]. Hydrology and Earth System Sciences, 2019,23:3117-3139 |
[49] | Xu H, Xu K, Lian J, et al. Compound effects of rainfall and storm tides on coastal flooding risk[J]. Stochastic Environmental Research and Risk Assessment, 2019,33(7):1249-1261 |
[50] | Liu X, Li N, Yuan S, et al. The joint return period analysis of natural disasters based on monitoring and statistical modeling of multidimensional hazard factors[J]. Science of the Total Environment, 2015,538:724-732 |
[51] | van den Hurk B, van Meijgaard E, de Valk P, et al. Analysis of a compounding surge and precipitation event in the Netherlands[J]. Environmental Research Letters, 2015,10(3):035001 |
[52] | 刘永和, 郭维栋, 冯锦明, 等. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 2011,26(8):837-847. |
Liu Y H, Guo W D, Feng J M, et al. A summary of methods for statistical downscaling of meteorological data[J]. Advances in Earth Science, 2011,26(8):837-847 (in Chinese) | |
[53] | Hao Z, Singh V P, Hao F. Compound extremes in hydroclimatology: a review[J]. Water, 2018,10(6):718 |
[54] | Salvadori G, Durante F, de Michele C, et al. A multivariate copula: based framework for dealing with hazard scenarios and failure probabilities[J]. Water Resources Research, 2016,52(5):3701-3721 |
[55] | Zhang Q, Xiao M, Singh V P. Uncertainty evaluation of copula analysis of hydrological droughts in the East River basin, China[J]. Global and Planetary Change, 2015,129:1-9 |
[56] | Bracken C, Holman K, Rajagopalan B, et al. A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis[J]. Water Resources Research, 2018,54(1):243-255 |
[57] | 夏军, 石卫, 张利平, 等. 气候变化对防洪安全影响研究面临的机遇与挑战[J]. 四川大学学报: 工程科学版, 2016,48(2):7-13. |
Xia J, Shi W, Zhang L P, et al. Opportunity and challenge of the climate change impact on flood protection[J]. Journal of Sichuan University: Engineering Science Edition, 2016,48(2):7-13 (in Chinese) | |
[58] | Arns A, Dangendorf S, Jensen J, et al. Sea-level rise induced amplification of coastal protection design heights[J]. Scientific Reports, 2017,7:40171 |
[59] | Wu S, Feng A, Gao J, et al. Shortening the recurrence periods of extreme water levels under future sea-level rise[J]. Stochastic Environmental Research and Risk Assessment, 2017,31(10):2573-2584 |
[60] | Vitousek S, Barnard P L, Fletcher C H, et al. Doubling of coastal flooding frequency within decades due to sea-level rise[J]. Scientific Reports, 2017,7(1):1-9 |
[61] | 熊立华, 江聪, 杜涛, 等. 变化环境下非一致性水文频率分析研究综述[J]. 水资源研究, 2015,4(4):310-319. |
Xiong L H, Jiang C, Du T, et al. Review on nonstationary hydrological frequency analysis under changing environments[J]. Journal of Water Resources Research, 2015,4(4):310-319 (in Chinese) | |
[62] | 郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报, 2016,47(3):302-314. |
Guo S L, Liu Z J, Xiong L H. Advances and assessment on design flood estimation methods[J]. Journal of Hydraulic Engineering, 2016,47(3):302-314 (in Chinese) | |
[63] | 方建, 杜鹃, 徐伟, 等. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014,29(9):1085-1093. |
Fang J, Du J, Xu W, et al. Advances in the study of climate change impacts on flood disaster[J]. Advances in Earth Science, 2014,29(9):1085-1093 (in Chinese) | |
[64] | 芮孝芳, 蒋成煜, 张金存. 流域水文模型的发展[J]. 水文, 2006 (3):22-26. |
Rui X F, Jiang C Y, Zhang J C. Development of watershed hydrologic models[J]. Journal of China Hydrology, 2006 (3):22-26 (in Chinese) | |
[65] | 徐宗学, 程磊. 分布式水文模型研究与应用进展[J]. 水利学报, 2010,41(9):1009-1017. |
Xu Z X, Cheng L. Progress on studies and applications of the distributed hydrological models[J]. Journal of Hydraulic Engineering, 2010,41(9):1009-1017 (in Chinese) | |
[66] | Lian Y, Chan I C, Singh J, et al. Coupling of hydrologic and hydraulic models for the Illinois River basin[J]. Journal of Hydrology, 2007,344(3-4):210-222 |
[67] | Paiva R C D, Collischonn W, Tucci C. Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach[J]. Journal of Hydrology, 2011,406(3-4):170-181 |
[68] | 余富强, 鱼京善, 蒋卫威, 等. 基于水文水动力耦合模型的洪水淹没模拟[J]. 南水北调与水利科技, 2019,17(5):37-43. |
Yu F Q, Yu J S, Jiang W W, et al. Flood inundation simulation based on coupled hydrological-hydrodynamic model[J]. South-to-North Water Transfers and Water Science & Techonology, 2019,17(5):37-43 (in Chinese) | |
[69] | Teng J, Jakeman A J, Vaze J, et al. Flood inundation modelling: a review of methods, recent advances and uncertainty analysis[J]. Environmental Modelling & Software, 2017,90:201-216 |
[70] | Hunter N M, Bates P D, Horritt M S, et al. Simple spatially-distributed models for predicting flood inundation: a review[J]. Geomorphology, 2007,90(3):208-225 |
[71] | 丁志雄, 李纪人, 李琳. 基于GIS格网模型的洪水淹没分析方法[J]. 水利学报, 2004,35(6):56-60. |
Ding Z X, Li J R, Li L. Method for flood submergence analysis based on GIS grid model[J]. Journal of Hydraulic Engineering, 2004,35(6):56-60 (in Chinese) | |
[72] | Néelz S. Desktop review of 2D hydraulic modelling packages [M]. Bristol: Environment, 2009 |
[73] | 刘春霞, 赵中阔, 毕雪岩, 等. 海洋环流与海浪模式的发展及其应用[J]. 气象科技进展, 2017,7(4):12-22. |
Liu C X, Zhao Z K, Bi X Y, et al. Research and application of ocean circulation and wave models: a review and prospects[J]. Advances in Meteorological Science and Technology, 2017,7(4):12-22 (in Chinese) | |
[74] | 石先武, 谭骏, 国志兴, 等. 风暴潮灾害风险评估研究综述[J]. 地球科学进展, 2013,8:866-874. |
Shi X W, Tang J, Guo Z X, et al. A review of risk assessment of storm surge disaster[J]. Advances in Earth Science, 2013,8:866-874 (in Chinese) | |
[75] | Bhaskaran P K, Nayak S, Bonthu S R, et al. Performance and validation of a coupled parallel ADCIRC-SWAN model for THANE cyclone in the Bay of Bengal[J]. Environmental Fluid Mechanics, 2013,13(6):601-623 |
[76] | Wang Y, Mao X, Jiang W. Long-term hazard analysis of destructive storm surges using the ADCIRC-SWAN model: a case study of Bohai Sea, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018,73:52-62 |
[77] | Sebastian A, Proft J, Dietrich J C, et al. Characterizing hurricane storm surge behavior in Galveston Bay using the SWAN+ ADCIRC model[J]. Coastal Engineering, 2014,88:171-181 |
[78] | Santiago-Collazo F L, Bilskie M V, Hagen S C. A comprehensive review of compound inundation models in low-gradient coastal watersheds[J]. Environmental Modelling & Software, 2019,119:166-181 |
[79] | Silva-Araya W F, Santiago-Collazo F L, Gonzalez-Lopez J, et al. Dynamic modeling of surface runoff and storm surge during hurricane and tropical storm events[J]. Hydrology, 2018,5(1):13 |
[80] | Joyce J, Chang N B, Harji R, et al. Cascade impact of hurricane movement, storm tidal surge, sea level rise and precipitation variability on flood assessment in a coastal urban watershed[J]. Climate Dynamics, 2018,51(1-2):383-409 |
[81] | Bacopoulos P, Tang Y, Wang D, et al. Integrated hydrologic-hydrodynamic modeling of estuarine-riverine flooding: 2008 tropical storm fay[J]. Journal of Hydrologic Engineering, 2017,22(8):04017022 |
[82] | Chen W B, Liu W C. Modeling flood inundation induced by river flow and storm surges over a river basin[J]. Water, 2014,6(10):3182-3199 |
[83] | Chen W B, Liu W C. Assessment of storm surge inundation and potential hazard maps for the southern coast of Taiwan[J]. Natural Hazards, 2016,82(1):591-616 |
[84] | Christian J, Fang Z, Torres J, et al. Modeling the hydraulic effectiveness of a proposed storm surge barrier system for the Houston ship channel during hurricane events[J]. Natural Hazards Review, 2014,16(1):04014015 |
[85] | Yin J, Lin N, Yu D. Coupled modeling of storm surge and coastal inundation: a case study in New York city during Hurricane Sandy[J]. Water Resources Research, 2016,52(11):8685-8699 |
[86] | Ikeuchi H, Hirabayashi Y, Yamazaki D, et al. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: model development and its application to 2007 Cyclone Sidr in Bangladesh[J]. Journal of Advances in Modeling Earth Systems, 2017,9(4):1847-1862 |
[87] | Du S, Scussolini P, Ward P J, et al. Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai[J]. Global Environmental Change, 2020,61:102037 |
[88] | Saleh F, Ramaswamy V, Wang Y, et al. A multi-scale ensemble-based framework for forecasting compound coastal-riverine flooding: the Hackensack-Passaic watershed and Newark Bay[J]. Advances in Water Resources, 2017,110:371-386 |
[89] | Tang H S, Kraatz S, Wu X G, et al. Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: method, implementation, and experiment[J]. Ocean Engineering, 2013,62:56-67 |
[90] | Fringer O B, Dawson C N, He R, et al. The future of coastal and estuarine modeling: findings from a workshop[J]. Ocean Modelling, 2019,143:101458 |
[1] | 蔡榕硕,谭红建. 海平面加速上升对低海拔岛屿、沿海地区及社会的影响和风险[J]. 气候变化研究进展, 2020, 16(2): 163-171. |
[2] | 丁裕国 李佳耘 江志红 余锦华. 极值统计理论的进展及其在气候变化研究中的应用[J]. 气候变化研究进展, 2011, 7(4): 248-252. |
[3] | 郭军;李明财;段丽瑶. 环渤海地区1961-2007年极端强降水时空变化特征[J]. 气候变化研究进展, 2010, 6(05): 319-324. |
[4] | 董锁成;陶澍;杨旺舟;李飞;李双成;李宇;刘鸿雁. 气候变化对中国沿海地区城市群的影响[J]. 气候变化研究进展, 2010, 6(04): 284-289. |
[5] | 李威;翟盘茂. 中国极端强降水日数与ENSO的关系[J]. 气候变化研究进展, 2009, 5(06): 336-342. |
[6] | 余卫东 柳俊高 常军 王纪军. 1957-2005年河南省降水和温度极端事件变化[J]. 气候变化研究进展, 2008, 4(002): 78-083. |
[7] | 苏布达;姜彤;任国玉;陈正洪. 长江流域极端降水时空分布和趋势[J]. 气候变化研究进展, 2006, 02(01): 9-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|