|
Climate Change Research ›› 2025, Vol. 21 ›› Issue (1): 116-124.doi: 10.12006/j.issn.1673-1719.2024.093
• Mitigation to Climate Change • Previous Articles Next Articles
TONG Rui-Yong1, WEI Run-Bin2, WU Jin-Yan3, MAO Bao-Hua1,4(), TIAN Pei-Ning1
Received:
2024-05-08
Revised:
2024-07-17
Online:
2025-01-30
Published:
2024-12-26
TONG Rui-Yong, WEI Run-Bin, WU Jin-Yan, MAO Bao-Hua, TIAN Pei-Ning. Influence of power generation structure on carbon emission factor of high-speed railway in operation period[J]. Climate Change Research, 2025, 21(1): 116-124.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2024.093
[1] | álvarez A G. Energy consumption and emissions of high-speed trains[J]. Transportation Research Record, 2010, 2159 (1): 27-35 |
[2] | 付延冰, 刘恒斌, 张素芬. 高速铁路生命周期碳排放计算方法[J]. 中国铁道科学, 2013, 34 (5): 140-144. |
Fu Y B, Liu H B, Zhang S F. Calculation method for carbon dioxide emission in the life cycle of high-speed railway[J]. China Railway Science, 2013, 34 (5): 140-144 (in Chinese) | |
[3] |
Chang Y, Lei S H, Teng J J, et al. The energy use and environmental emissions of high-speed rail transportation in China: a bottom-up modeling[J]. Energy, 2019, 182: 1193-1201
doi: 10.1016/j.energy.2019.06.120 |
[4] | 宋晓东, 付延冰, 刘恒斌, 等. 基于生命周期评价的高速铁路减排效果[J]. 中南大学学报(自然科学版), 2014, 45 (9): 3301-3307. |
Song X D, Fu Y B, Liu H B, et al. Carbon dioxide emission reduction of high-speed railway[J]. Journal of Central South University: Science and Technology, 2014, 45 (9): 3301-3307 (in Chinese) | |
[5] | Chen P H, Lu Y, Wan Y L, et al. Assessing carbon dioxide emissions of high-speed rail: the case of Beijing-Shanghai corridor[J]. Transportation Research Part D: Transport and Environment, 2021, 97: 102949 |
[6] | 陈进杰, 王兴举, 王祥琴, 等. 高速铁路全生命周期碳排放计算[J]. 铁道学报, 2016, 38 (12): 47-55. |
Chen J J, Wang X J, Wang X Q, et al. Calculation of carbon dioxide emissions in the life cycle of high-speed railway[J]. Journal of the China Railway Society, 2016, 38 (12): 47-55 (in Chinese) | |
[7] | Wang Y Z, Zhou S, Ou X M. Development and application of a life cycle energy consumption and CO2 emissions analysis model for high-speed railway transport in China[J]. Advances in Climate Change Research, 2021, 12 (2): 270-280 |
[8] | 毛保华, 卢霞, 黄俊生, 等. 碳中和目标下氢能源在我国运输业中的发展路径[J]. 交通运输系统工程与信息, 2021, 21 (6): 234-243. |
Mao B H, Lu X, Huang J S, et al. On development path of hydrogen energy technology in China’s transportation system under carbon neutrality goal[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (6): 234-243 (in Chinese) | |
[9] | Working Group on Energy Balances. Gross electricity production in Germany[EB/OL]. 2024 [2024-03-11]. https://www.destatis.de/EN/Themes/Economic-Sectors-Enterprises/Energy/Production/Tables/gross-electricity-production.html |
[10] | 王彦哲, 周胜, 王宇, 等. 中国核电和其他电力技术环境影响综合评价[J]. 清华大学学报(自然科学版), 2021, 61 (4): 377-384. |
Wang Y Z, Zhou S, Wang Y, et al. Comprehensive assessment of the environmental impact of China’s nuclear and other power generation technologies[J]. Journal of Tsinghua University (Science and Technology), 2021, 61 (4): 377-384 (in Chinese) | |
[11] | 刘含笑, 单思珂, 魏书洲, 等. 基于生命周期法的煤电碳足迹评估[J]. 中国电力, 2024, 57 (7): 227-237. |
Liu H X, Shan S K, Wei S Z, et al. Life-cycle carbon footprint assessment of coal-fired power generation[J]. Electric Power, 2024, 57 (7): 227-237 (in Chinese) | |
[12] | Yue T, Liu Q, Tong Y L, et al. Analysis of emission evolution and synergistic reduction effect of air pollutants and CO2 from Chinese coal-fired power plants[J]. Atmospheric Pollution Research, 2024, 15 (2): 102001 |
[13] | 生态环境部环境规划院. 中国产品全生命周期温室气体排放系数集 (2022) 正式发布[EB/OL]. 2022 [2024-04-12]. https://www.caep.org.cn/sy/tdftzhyjzx/zxdt/202201/t20220105_966202.shtml. |
Chinese Academy of Environmental Planning. China products carbon footprint factors database (2022) officially released[EB/OL]. 2022 [2024-04-12]. https://www.caep.org.cn/sy/tdftzhyjzx/zxdt/202201/t20220105_966202.shtml (in Chinese) | |
[14] | 马皓诚, 左国防, 宋国辉. 燃气热电联产机组及热网系统的碳排放分摊研究[J]. 江苏科技信息, 2024, 41 (10): 118-123. |
Ma H C, Zuo G F, Song G H. Study on carbon emission allocation of gas-fired cogeneration unit and heat supply system[J]. Jiangsu Science and Technology Information, 2024, 41 (10): 118-123 (in Chinese) | |
[15] | Jacobson M Z. 100% clean, renewable energy and storage for everything[R]. California: Stanford University, 2020 |
[16] | Li H, Jiang H D, Dong K Y, et al. A comparative analysis of the life cycle environmental emissions from wind and coal power: evidence from China[J]. Journal of Cleaner Production, 2020, 248 (3): 119192 |
[17] | 杨挺, 党兆帅, 王旭东, 等. 混合交易模式下电力系统全环节碳排放核算方法[J/OL]. 中国电机工程学报, 2024 [2024-07-12]. https://link.cnki.net/urlid/11.2107.tm.20240330.1602.002. |
Yang T, Dang Z S, Wang X D, et al. The carbon emission accounting method for the entire electricity system in the mixed trading model[J/OL]. Proceedings of the CSEE, 2024 [2024-07-12]. https://link.cnki.net/urlid/11.2107.tm.20240330.1602.002 (in Chinese) | |
[18] | Long Y X, Chen Y N, Xu C C, et al. The role of global installed wind energy in mitigating CO2 emission and temperature rising[J]. Journal of Cleaner Production, 2023, 423 (10): 138778 |
[19] | 王怀斌. 光伏发电全生命周期碳足迹及减排潜力研究[J]. 中国能源, 2023, 45 (8): 34-44. |
Wang H B. Life cycle carbon footprint and carbon emission reduction potential of photovoltaic power generation[J]. Energy of China, 2023, 45 (8): 34-44 (in Chinese) | |
[20] | Guo X P, Dong Y N, Ren D F. CO2 emission reduction effect of photovoltaic industry through 2060 in China[J]. Energy, 2023, 269 (4): 126692 |
[21] | 黄跃群, 刘耀儒, 许文彬, 等. 水利水电工程全生命周期碳排放研究: 以犬木塘工程为例[J]. 清华大学学报(自然科学版), 2022, 62 (8): 1366-1373. |
Huang Y Q, Liu Y R, Xu W B, et al. Life cycle carbon emissions of water reservoir and hydroelectric projects: a case study of the Quanmutang project[J]. Journal of Tsinghua University (Science and Technology), 2022, 62 (8): 1366-1373 (in Chinese) | |
[22] | 刘宇, 任品桥, 郑焱, 等. 水力发电生命周期评价及碳足迹区域化分析[J]. 北京工业大学学报, 2024, 50 (3): 282-289. |
Liu Y, Ren P Q, Zheng Y, et al. Life cycle assessment and regionalized carbon footprint analysis of hydropower generation[J]. Journal of Beijing University of Technology, 2024, 50 (3): 282-289 (in Chinese) | |
[23] | 侯公羽, 马骁赟, 杨振华, 等. 抽水蓄能电站全生命周期碳排放计算与分析[J]. 中国环境科学, 2023, 43 (S1): 326-335. |
Hou G Y, Ma X Y, Yang Z H, et al. Calculation and analysis of carbon emissions in the whole life cycle of pumped storage power stations[J]. China Environmental Science, 2023, 43 (S1): 326-335 (in Chinese) | |
[24] | Wang L K, Wang Y, Du H B, et al. A comparative life-cycle assessment of hydro-, nuclear and wind power: a China study[J]. Applied Energy, 2019, 249 (9): 37-45 |
[25] | 吕晨, 张哲, 陈徐梅, 等. 中国分省道路交通二氧化碳排放因子[J]. 中国环境科学, 2021, 41 (7): 3122-3130. |
Lü C, Zhang Z, Chen X M, et al. Study on CO2 emission factors of road transport in Chinese provinces[J]. China Environmental Science, 2021, 41 (7): 3122-3130 (in Chinese) | |
[26] | Yu K M, Strauss J, Liu S L, et al. Effects of railway speed on aviation demand and CO2 emissions in China[J]. Transportation Research Part D: Transport and Environment, 2021, 94 (3): 102772 |
[27] | Ministère de la Transition énergétique. GHG information for transport services[R]. Paris: Ministère de la Transition énergétique, 2019 |
[28] | électricité de France S A. Plus loin dans la réduction des émissions de CO2[EB/OL]. 2024 [2024-03-11]. https://www.edf.fr/groupe-edf/agir-en-entreprise-responsable/responsabilite-societale-dentreprise/plus-loin-dans-la-reduction-des-emissions-de-co2 |
[29] | Bruno D C, Davide D F, Nicola C, et al. Comparative specific energy consumption between air transport and high-speed rail transport: a practical assessment[J]. Transportation Research Part D Transport and Environment, 2017, 52 (5): 227-243 |
[30] | Umweltbundesamt. Entwicklung der spezifischen treibhausgas-emissionen des Deutschen strommix in den jahren 1990-2021[R]. Dessau-Roßlau: Umweltbundesamt, 2022 |
[31] | 日本国土交通省. 交通运输部门的二氧化碳排放量统计指标[EB/OL]. 2023 [2024-03-02]. https://www.mlit.go.jp/sogoseisaku/environment/content/001513823.pdf. |
Ministry of Land, Infrastructure, Transport and Tourism. Statistical indicators of CO2 emissions from the transport sector[EB/OL]. 2023 [2024-03-02]. https://www.mlit.go.jp/sogoseisaku/environment/content/001513823.pdf (in Chinese) | |
[32] | 日本国土交通省. 新干线高速铁路系统的发展与特征[EB/OL]. 2023 [2024-03-11]. https://www.mlit.go.jp/tetudo/shinkansen/shinkansen3_2.html. |
Ministry of Land, Infrastructure, Transport and Tourism. Development and characteristics of the Shinkansen high-speed railway system[EB/OL]. 2023 [2024-03-11]. https://www.mlit.go.jp/tetudo/shinkansen/shinkansen3_2.html (in Chinese) | |
[33] | 日本电气事业联合会. 发电设备及生产供应情况[EB/OL]. 2024 [2024-03-02]. https://www.fepc.or.jp/smp/nuclear/state/setsubi/index.html. |
The Federation of Electric Power Companies of Japan. Power generation equipment and production supply[EB/OL]. 2024 [2024-03-02]. https://www.fepc.or.jp/smp/nuclear/state/setsubi/index.html (in Chinese) | |
[34] | 日本电气事业低碳社会协议会. 与发电相关的CO2排放量变化趋势[EB/OL]. 2024 [2024-03-11]. https://www.ene100.jp/zumen/2-1-16. |
The Electric Power. Council for a Low Carbon Society. Trends in CO2emissions related to power generation[EB/OL]. 2024 [2024-03-11]. https://www.ene100.jp/zumen/2-1-16 (in Chinese) | |
[35] |
毛保华, 陈硕, 吴雪妍, 等. 碳达峰目标下我国城市客运交通发展的引导策略研究[J]. 交通运输研究, 2022, 8 (3): 21-29.
doi: 10.16503/j.cnki.2095-9931.2022.03.002 |
Mao B H, Chen S, Wu X Y, et al. Development policy for urban transport of China with carbon peaking goal[J]. Transport Research, 2022, 8 (3): 21-29 (in Chinese) | |
[36] | U.S. Energy Information Administration (EIA). International Energy Outlook 2019 with projections to 2050[R]. Washington, DC: U.S. Energy Information Administration, 2019. |
[37] | 中国宏观经济研究院能源研究所. 中国能源转型展望2021[R]. 北京: 中国宏观经济研究院, 2021. |
Energy Research Institute of Academy of Macroeconomic Research. China energy transformation outlook 2021[R]. Beijing: Academy of Macroeconomic Research, 2021 (in Chinese) | |
[38] | William C, Chen S P, Holly G, et al. China’s future generation: assessing the maximum potential for renewable power sources in China to 2050[R]. Maryland: World Wildlife Fund, 2014 |
[39] | Deloitte. 再造企业可持续发展创新力[EB/OL]. 2021 [2024-03-11]. https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/technology/deloitte-cn-consulting-carbon-neutral-full-edition-zh-210608.pdf. |
Deloitte. Rebuilding the innovation capacity of sustainable development of enterprises[EB/OL]. 2021 [2024-03-11]. https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/technology/deloitte-cn-consulting-carbon-neutral-full-edition-zh-210608.pdf (in Chinese) | |
[40] | 国家能源局. 煤电清洁进程加快发展瓶颈仍待突破[EB/OL]. 2021 [2024-03-02]. https://www.nea.gov.cn/2022-01/07/c_1310413767.htm. |
National Energy Administration. Acceleration of clean coal power development, yet bottlenecks remain to be broken[EB/OL]. 2021 [2024-03-02]. https://www.nea.gov.cn/2022-01/07/c_1310413767.htm (in Chinese) |
[1] | WEI Xi-Kai, TAN Xiao-Shi, RUAN Jia-Tong, LIN Ming, QIN Lu, SUN Guo-Li, XIANG Ke-Qi, CHU Yao-Hui. Research on carbon emission factors of regional and provincial power grids from 2005 to 2021 [J]. Climate Change Research, 2024, 20(3): 337-350. |
[2] | LUO Xiao-Yu, CAO Xing-Yu, SONG Zhi-Qian. Comparison of carbon emissions throughout the entire lifecycle of buildings between China and Japan [J]. Climate Change Research, 2024, 20(2): 220-230. |
[3] | TIAN Pei-Ning, LIANG Xiao, GUAN Yu-Jie, ZHAO Yi-Xin, MAO Bao-Hua, XUE Ting. Whole life cycle carbon emission and power generation structure transformation pathway planning of China’s power [J]. Climate Change Research, 2024, 20(1): 97-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|