|
Climate Change Research ›› 2025, Vol. 21 ›› Issue (1): 22-31.doi: 10.12006/j.issn.1673-1719.2024.261
Special Issue: 创刊20周年纪念专栏
• 20th Anniversary of Climate Change Research • Previous Articles Next Articles
WU Qing-Bai1(), XU Xiao-Ming1, HE Jian-Qiao1, YAO Xiao-Jun2, ZHANG Zhong-Qiong1
Received:
2024-10-09
Revised:
2024-11-22
Online:
2025-01-30
Published:
2024-12-31
WU Qing-Bai, XU Xiao-Ming, HE Jian-Qiao, YAO Xiao-Jun, ZHANG Zhong-Qiong. Impact of cryosphere changes on engineering in Qinghai-Xizang Plateau[J]. Climate Change Research, 2025, 21(1): 22-31.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2024.261
[1] |
秦大河, 姚檀栋, 丁永建, 等. 面向可持续发展的冰冻圈科学[J]. 冰川冻土, 2020, 42 (1): 1-10.
doi: 10.7522/j.issn.1000-0240.2020.0001 |
Qin D H, Yao T D, Ding Y J, et al. The cryospheric science for sustainable development[J]. Journal of Glaciology and Geocryology, 2020, 42 (1): 1-10 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2020.0001 |
|
[2] | Ding Y, Mu C, Wu T, et al. Increasing cryospheric hazards in a warming climate[J]. Earth-Science Reviews, 2021, 213: 103500 |
[3] | 王世金, 温家洪. 冰冻圈灾害特征、影响及其学科发展展望[J]. 中国科学院院刊, 2020, 35 (4): 523-530. |
Wang S J, Wen J H. Characteristics, influence of cryosphere disaster and prospect of discipline development[J]. Bulletin of Chinese Academy of Sciences, 2020, 35 (4): 523-530 (in Chinese) | |
[4] | 吴青柏, 李志军, 沈永平. 冰冻圈工程学助力互联互通基础设施建设[J]. 中国科学院院刊, 2020, 35 (4): 443-449. |
Wu Q B, Li Z J, Shen Y P. Cryosphere engineering science supporting interactivity infrastructures construction[J]. Bulletin of Chinese Academy of Sciences, 2020, 35 (4): 443-449 (in Chinese) | |
[5] | Hjort J, Karjalainen O, Aalto J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century[J]. Nature Communication, 2018, 9: 5147 |
[6] | 吴青柏, 李志军. 冰冻圈工程学[M]. 北京: 科学出版社, 2023. |
Wu Q B, Li Z J. Cryosphere engineering[M]. Beijing: Scientific Press, 2023 (in Chinese) | |
[7] | 邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34 (11): 1285-1292. |
Wu G J, Yao T D, Wang W C, et al. Glacial hazards on Tibetan Plateau and surrounding alpines[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1285-1292 (in Chinese) | |
[8] | 胡晓丽, 邵社刚. 天山山区公路施工扬尘对冰川环境影响模拟研究[J]. 公路交通科技(应用技术版), 2016, 12 (8): 163-166. |
Hu X L, Shao S G. Simulation study on the effect of highway construction dust on glacier environment in Tianshan Mountain area[J]. Journal of Highway and Transportation Research and Development, 2016, 12 (8): 163-166 (in Chinese) | |
[9] | 吴青柏, 牛富俊. 青藏高原多年冻土变化与路基稳定性[J]. 科学通报, 2013, 58 (2): 115-130. |
Wu Q B, Niu F J. Permafrost changes and engineering stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2013, 58 (10): 1079-1094 (in Chinese) | |
[10] | Niu F J, Luo J, Lin Z, et al. Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai-Tibet engineering corridor, China[J]. Natural Hazards, 2014, 74: 1667-1682 |
[11] | Hjort J, Streletskiy D, Doré G, et al. Impacts of permafrost degradation on infrastructure[J]. Nature Review Earth & Environment, 2022, 3 (1): 24-38 |
[12] | Luo J, Niu F, Lin Z, et al. Inventory and frequency of retrogressive thaw slumps in permafrost region of the Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2022, 49: e2022GL099829 |
[13] | Melvin A M, Larsen P, Boehlert B, et al. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation[J]. Proceeding National Academy of Science, 2017, 114: 122-131 |
[14] | Xu X, Wu Q. Impact of climate change on allowable bearing capacity on the Qinghai-Tibetan Plateau[J]. Advances in Climate Change Research, 2019, 10: 99-108 |
[15] | Guo W, Liu S, Xu J, et al. The second Chinese glacier inventory: data, methods, and results[J]. Journal of Glaciology, 2015, 61: 357-372 |
[16] | Zou D, Zhao L, Sheng Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. Cryosphere, 2017, 11: 2527-2542 |
[17] | Wang Y, Huang X, Liang H, et al. Tracking snow variations in the Northern Hemisphere using multi-source remote sensing data (2000-2015)[J]. Remote Sensing, 2018, 10: 136 |
[18] | 张镱锂. 青藏高原边界数据总集[DB/OL]. 国家青藏高原数据中心, 2019 [2024-05-01]. https://doi.org/10.11888/Geogra.tpdc.270099. |
Zhang Y L. Integration dataset of Tibet Plateau boundary[DB/OL]. National Tibetan Plateau Data Center, 2019 [2024-05-01]. https://doi.org/10.11888/Geogra.tpdc.270099 (in Chinese) | |
[19] | Ran Y, Cheng G, Dong Y, et al. Permafrost degradation increases risk and large future costs of infrastructure on the Third Pole[J]. Communication Earth and Environment, 2022, 3: 238 |
[20] | Wu Q, Sheng Y, Yu Q, et al. Engineering in the rugged permafrost terrain on the roof of the world under a warming climate[J]. Permafrost Periglacial Processes, 2020, 31 (3): 417-428 |
[21] | Qin D, Ding Y, Xiao C, et al. Cryospheric science: research framework and disciplinary system[J]. National Science Review, 2018, 5 (2): 141-154 |
[22] | Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667 |
[23] | Su B, Xiao C, Chen D, et al. Glacier change in China over past decades: spatiotemporal patterns and influencing factors[J]. Earth-Science Reviews, 2022, 226: 103926 |
[24] |
Liu Y, Wang N, Zhang J, et al. Climate change and its impacts on mountain glaciers during 1960-2017 in western China[J]. Journal of Arid Land, 2019, 11: 537-550
doi: 10.1007/s40333-019-0025-6 |
[25] | 康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16 (2): 143-152. |
Kang S C, Guo W Q, Zhong X Y, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16 (2): 143-152 (in Chinese) | |
[26] |
Miles E, McCarthy M, Dehecq A, et al. Health and sustainability of glaciers in High Mountain Asia[J]. Nature Communications, 2021, 12: 2868
doi: 10.1038/s41467-021-23073-4 pmid: 34001875 |
[27] | 车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34 (11): 1247-1253. |
Che T, Hao X H, Dai L Y, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1247-1253 (in Chinese) | |
[28] |
黄晓东, 马英, 李雨馨, 等. 1980—2020年青藏高原积雪时空变化特征[J]. 冰川冻土, 2023, 45 (2): 423-434.
doi: 10.7522/j.issn.1000-0240.2023.0032 |
Huang X D, Ma Y, Li Y X, et al. Spatiotemporal variation characteristics of snow cover over the Tibetan Plateau from 1980 to 2020[J]. Journal of Glaciology and Geocryology, 2023, 45 (2): 423-434 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2023.0032 |
|
[29] | Ma Q, Keyimu M, Li X, et al. Climate and elevation control snow depth and snow phenology on the Tibetan Plateau[J]. Journal of Hydrology, 2023, 617: 128938 |
[30] | Nury A, Sharma A, Mehrotra R, et al. Projected changes in the Tibetan Plateau snowpack resulting from rising global temperatures[J]. Journal of Geophysical Research: Atmospheres, 2022, 127: e2021JD036201 |
[31] | Ji Z, Kang S. Projection of snow cover changes over China under RCP scenarios[J]. Climate Dynamics, 2013, 41 (3-4): 589-600 |
[32] | 张人禾, 苏凤阁, 江志红, 等. 青藏高原21世纪气候和环境变化预估研究进展[J]. 科学通报, 2015, 60 (32): 3036-3047. |
Zhang R H, Su F G, Jiang Z H, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J]. Chinese Science Bulletin, 2015, 60 (32): 3036-3047 (in Chinese) | |
[33] | 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征, 变化及影响[J]. 科学通报, 2019, 64: 2783-2795. |
Cheng G D, Zhao L, Li R, et al. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2019, 64: 2783-2795 (in Chinese) | |
[34] | 吴吉春, 盛煜, 于晖, 等. 祁连山中东部的冻土特征(II): 多年冻土特征[J]. 冰川冻土, 2007, 29 (3): 426-432. |
Wu J C, Sheng Y, Yu H, et al. Permafrost in the middle-east section of Qilian Mountains (II): distribution of permafrost[J]. Journal of Glaciology and Geocryology, 2007, 29 (3): 426-432. (in Chinese) | |
[35] | 罗栋梁, 金会军, 林琳, 等. 青海高原中、东部多年冻土及寒区环境退化[J]. 冰川冻土, 2012, 34 (3): 538-546. |
Luo D L, Jin H J, Lin L, et al. Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34 (3): 538-546 (in Chinese) | |
[36] | Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research-Earth Surface, 2007, 112 (F2): 1-10 |
[37] | Wu Q, Ma W, Lai Y, et al. Permafrost degradation threatening Qinghai-Xizang railway[J]. Engineering, 2024. DOI: 10.1016/j.eng.2024.01.023 |
[38] | Zhang Z, Wu Q, Jiang G, et al. Changes in the permafrost temperatures from 2003 to 2015 in the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2020, 169: 102904 |
[39] | Xu X, Wu Q. Active layer thickness variation on the Qinghai-Tibetan Plateau: historical and projected trends[J]. Journal of Geophysical Research-Atmospheres, 2021, 126 (23): e2021JD034841 |
[40] | Yin G, Niu F, Lin Z, et al. Data-driven spatiotemporal projections of shallow permafrost based on CMIP6 across the Qinghai-Tibet Plateau at 1 km2 scale[J]. Advances in Climate Change Research, 2021, 12 (6): 814-827 |
[41] | Guo D L, Sun J Q. Permafrost thaw and associated settlement hazard onset timing over the Qinghai-Tibet engineering corridor[J]. International Journal of Disaster Risk Science, 2015, 6 (4): 347-358 |
[42] | Carrivick J, Tweed F. A global assessment of the societal impacts of glacier outburst floods[J]. Global and Planetary Change, 2016, 144: 1-6 |
[43] | Nie Y, Deng Q, Pritchard H D, et al. Glacial lake outburst floods threaten Asia’s infrastructure[J]. Science Bulletin, 2023, 68: 1361-1365 |
[44] | Cui P, Ge Y, Li S, et al. Scientific challenges in disaster risk reduction for the Sichuan-Tibet railway[J]. Engineering Geology, 2022, 309: 106837 |
[45] | Cook K L, Andermann C, Gimbert F, et al. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya[J]. Sciences, 2018, 362: 53-57 |
[46] | 朱颖彦, 潘军宇, 李朝月, 等. 中巴喀喇昆仑公路冰川泥石流[J]. 山地学报, 2022, 40 (1): 71-83. |
Zhu Y Y, Pan J Y, Li C M, et al. Glacier debris flow along China-Pakistan International Karakoram Highway (KKH)[J]. Mountain Research, 2022, 40 (1): 71-83 (in Chinese) | |
[47] | 王世金, 效存德. 全球冰冻圈灾害高风险区: 影响与态势[J]. 科学通报, 2019, 64 (9): 891-901. |
Wang S J, Xiao C D. Global cryospheric disaster at high risk areas: impacts and trend[J]. Chinese Science Bulletin, 2019, 64 (9): 891-901 (in Chinese) | |
[48] | Gao Y, Liu S, Qi M, et al. Glacier-related hazards along the international Karakoram Highway: status and future perspectives[J]. Frontiers in Earth Science, 2021, 9: 611501 |
[49] | Wang H, Wang B, Cui P, et al. Disaster effects of climate change in High Mountain Asia: state of art and scientific challenges[J]. Advances in Climate Change Research, 2024, 15 (3): 367-389 |
[50] | Wei Z, Du Z, Wang L, et al. Sentinel-based inventory of thermokarst lakes and ponds across permafrost landscapes on the Qinghai-Tibet Plateau[J]. Earth and Space Science, 2021, 8 (11): e2021EA001950 |
[51] | Zhou G, Liu W, Xie C, et al. Accelerating thermokarst lake changes on the Qinghai-Tibetan Plateau[J]. Scientific Reports, 2024, 14: 2985 |
[52] | Xia Z, Huang L, Fan C, et al. Retrogressive thaw slumps along the Qinghai-Tibet engineering corridor: a comprehensive inventory and their distribution characteristics[J]. Earth System Science Data, 2022, 14: 3875-3887 |
[53] | Jiang G, Gao S, Lewkowicz A, et al. Development of a rapid active layer detachment slide in the Fenghuoshan Mountains, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2022, 33 (3): 298-309 |
[54] | 吴青柏, 张中琼, 刘戈. 青藏高原气候转暖与冻土工程的关系[J]. 工程地质学报, 2021, 29 (2): 342-352. |
Wu Q B, Zhang Z Q, Liu G. Relationships between climate warming and engineering stability of permafrost on Qinghai-Tibet Plateau[J]. Journal of Engineering Geology, 2021, 29 (2): 342-352 (in Chinese) | |
[55] | Zhang S, Niu F, Wang S, et al. Risk assessment of engineering diseases of embankment-bridge transition section for railway in permafrost regions[J]. Permafrost Periglacial Processes, 2022, 33 (1): 46-62 |
[56] | Li R, Zhang M, Konstantinov P, et al. Permafrost degradation induced thaw settlement susceptibility research and potential risk analysis in the Qinghai-Tibet Plateau[J]. Catena, 2022, 214: 106239 |
[57] | Larsen P, Goldsmith S, Smith O, et al. Estimating future costs for Alaska public infrastructure at risk from climate change[J]. Global Environmental Change, 2008, 18 (3): 442-457 |
[58] | Pritchard H D. Asia’s shrinking glaciers protect large populations from drought stress[J]. Nature, 2019, 569: 649-654 |
[59] | Haeberli W, Whiteman C. Snow and ice-related hazards, risks, and disasters: facing challenges of rapid change and long-term commitments[M]. Elsevier, 2021 |
[60] | Harrison S, Kargel J, Huggel C, et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods[J]. The Cryosphere, 2018, 12 (4): 1195-1209 |
[61] | Richardson S, Reynolds J. An overview of glacial hazards in the Himalayas[J]. Quaternary International, 2000, 65: 31-47 |
[62] | 王中隆. 中国风雪流及其防治研究[M]. 兰州: 兰州大学出版社, 2001. |
Wang Z L. Research on wind-driven snow flow and its prevention and control in China[M]. Lanzhou: Lanzhou University Press, 2001 (in Chinese) | |
[63] | 胡汝骥, 魏文寿. 试论中国的雪害区划[J]. 冰川冻土, 1987, 9 (S1): 1-12. |
Hu R J, Wei W S. On the zoning of snow damage in China[J]. Journal of Glaciology and Geocryology, 1987, 9 (S1): 1-12 (in Chinese) | |
[64] |
王中隆, 白重瑗, 陈元. 天山地区风雪流运动特征及其预防研究[J]. 地理学报, 1982, 37 (1): 51-64.
doi: 10.11821/xb198201007 |
Wang Z L, Bai Z Y, Chen Y. A study on the movement of snow drift in Tian Shan and its control[J]. Acta Geographica Sinica, 1982, 37 (1): 51-64 (in Chinese)
doi: 10.11821/xb198201007 |
|
[65] | 王中隆, 张志忠. 中国风吹雪区划[J]. 山地学报, 1999, 17 (4): 312-318. |
Wang Z L, Zhang Z Z. Regionalization of snow drift in China[J]. Journal of Mountain Science, 1999, 17 (4): 312-318 (in Chinese) | |
[66] | 吴青柏, 童长江. 寒区冻土工程[M]. 兰州: 兰州大学出版社, 2022. |
Wu Q B, Tong C J. Permafrost engineering of cold regions[M]. Lanzhou: Lanzhou University Press, 2022 (in Chinese) | |
[67] | Guy D, Niu F J, Heather B. Adaptation methods for transportation infrastructure built on degrading permafrost[J]. Permafrost and Periglacial Processes, 2016. DOI: 10.1002/ppp.1919 |
[68] | Zhang Z, Wu Q, Liu Y, et al. Thermal accumulation mechanism of asphalt pavement in permafrost regions of the Qinghai-Tibet Plateau[J]. Applied Thermal Engineering, 2018, 129: 345-353 |
[69] | Yu Q, Ji Y, Zhang Z, et al. Design and research of high voltage transmission lines on the Qinghai-Tibet Plateau: a special issue on the permafrost power lines[J]. Cold Regions Science and Technology, 2016, 121: 179-186 |
[1] | CAO Long. Climate system response to solar radiation modification [J]. Climate Change Research, 2021, 17(6): 671-684. |
[2] | ZHAO Li-Yun, John C. MOORE, Mike WOLOVICK. Targeted geoengineering for ice sheets [J]. Climate Change Research, 2020, 16(5): 564-569. |
[3] | Long CAO. Short commentary on CMIP6 Geoengineering Model Intercomparison Project (GeoMIP) [J]. Climate Change Research, 2019, 15(5): 487-492. |
[4] | Duo-Ying JI,Qian ZHANG,Zhi-Cheng LUO,Yang-Xin CHEN. Short commentary on CMIP6 Carbon Dioxide Removal Model Intercomparison Project (CDRMIP) [J]. Climate Change Research, 2019, 15(5): 457-464. |
[5] | Jian-Ping YANG,Yong-Jian DING,Yi-Ping FANG. Adaptation research of cryosphere change in China: advances and prospections [J]. Climate Change Research, 2019, 15(2): 178-186. |
[6] | Zuo-Long WEN,Jiu JIANG,Long CAO. Simulated effects of solar geoengineering on ocean acidification [J]. Climate Change Research, 2019, 15(1): 41-53. |
[7] | Chen Ying, Xin Yuan. Implications of Geoengineering Under 1.5℃Target: Analysis and Policy Recommendations [J]. Climate Change Research, 2017, 13(4): 337-345. |
[8] | Zhang Ying, Chen Ying, Pan Jiahua . Key Issues in Climate Engineering Economic Assessment and Governance [J]. Climate Change Research, 2016, 12(5): 442-449. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|