|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (5): 593-610.doi: 10.12006/j.issn.1673-1719.2024.044
• Mitigation to Climate Change • Previous Articles Next Articles
XIE Rui-Li1(), CHAI Qi-Min1,2(
)
Received:
2024-03-11
Revised:
2024-05-10
Online:
2024-09-30
Published:
2024-08-16
XIE Rui-Li, CHAI Qi-Min. Research on China’s methane emission reduction path based on SPAMC-Methane model[J]. Climate Change Research, 2024, 20(5): 593-610.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2024.044
[1] | UNFCCC. Draft decision -/CMA.5. Outcome of the first global stocktake[EB/OL]. 2023 [2024-03-07]. https://unfccc.int/sites/default/files/resource/cma2023L17adv.pdf |
[2] | 徐华清, 马翠梅. 推动我国甲烷排放控制迈上新台阶[J]. 中国环境监察, 2023 (11): 27-28. |
Xu H Q, Ma C M. Promote China’s methane emission control to a new stage[J]. China Environment Supervision, 2023 (11): 27-28 (in Chinese) | |
[3] | Janardanan R, Maksyutov S, Tsuruta A, et al. Country-scale analysis of methane emissions with a high-resolution inverse model using GOSAT and surface observations[J]. Remote Sensing, 2020, 12 (3): 375 |
[4] | Zhu S H, Feng L, Liu Y, et al. Decadal methane emission trend inferred from proxy GOSAT XCH4 retrievals: impacts of transport model spatial resolution[J]. Advances in Atmospheric Sciences, 2022, 39: 1343-1359 |
[5] | Harmsen M, van Vuuren D P, Bodirsky B L, et al. The role of methane in future climate strategies: mitigation potentials and climate impacts[J]. Climatic Change, 2020, 163 (3): 1409-1425 |
[6] | McKinsey & Company. Curbing methane emissions: how five industries can counter a major climate threat[R/OL]. 2021 [2022-10-21]. https://www.mckinsey.com/capabilities/sustainability/our-insights/curbing-methane-emissions-how-five-industries-can-counter-a-major-climate-threat |
[7] | US EPA. Global non-CO2 greenhouse gas emission projections & mitigation potential: 2015-2050[R/OL]. 2019 [2022-10-21]. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-non-co2-greenhouse-gas-emission-projections |
[8] | CCAC, UNEP. Global methane assessment: benefits and costs of mitigating methane emissions[R/OL]. 2021 [2022-10-21]. https://www.ccacoalition.org/en/resources/global-methane-assessment-full-report |
[9] | IEA. Curtailing methane emissions from fossil fuel operations: pathways to a 75% cut by 2030[R/OL]. 2021 [2022-10-21]. https://iea.blob.core.windows.net/assets/ba5d143a-f3ab-47e6-b528-049f81eb31ae/CurtailingMethaneEmissionsfromFossilFuelOperations.pdf |
[10] | 宋然平. 中国减缓气候变化的机遇: 非二氧化碳类温室气体[R/OL]. 2019 [2022-10-21]. https://files.wri.org/d8/s3fs-public/opportunities-advance-mitigation-ambition-china-chinese_0.pdf. |
Song R P. Opportunities to advance mitigation ambition in China: non-CO2 greenhouse gas emissions[R/OL]. 2019 [2022-10-21]. https://files.wri.org/d8/s3fs-public/opportunities-advance-mitigation-ambition-china-chinese_0.pdf (in Chinese) | |
[11] | He J K, Li Z, Zhang X L, et al. Comprehensive report on China’s long-term low-carbon development strategies and pathways[J]. Chinese Journal of Population, Resources and Environment, 2020 (18): 263-295 |
[12] | Lin J, Khanna N, Liu X, et al. China’s Non-CO2 greenhouse gas emissions: future trajectories and mitigation options and potential[J]. Scientific Reports, 2019 (9): 16095. DOI: 10.1038/s41598-019-52653-0 |
[13] | Lin J, Khanna N, Liu X, et al. Opportunities to tackle short-lived climate pollutants and other greenhouse gases for China[J]. Science of the Total Environment, 2022 (842): 156842. DOI: 10.1016/j.scitotenv.2022.156842 |
[14] | 贺晨旻, 迟远英, 向翩翩, 等. 我国甲烷排放情景分析: IPAC模型结果[J]. 大气科学学报, 2022, 45 (3): 414-427. DOI: 10.13878/j.cnki.dqkxxb.20220524008. |
He C M, Chi Y Y, Xiang P P, et al. CH4emission scenario analysis for China: IPAC results[J]. Transactions of Atmospheric Sciences, 2022, 45 (3): 414-427. DOI: 10.13878/j.cnki.dqkxxb.20220524008 (in Chinese) | |
[15] | 楚若男. 陕西省CH4、N2O排放清单及减排潜力分析[D]. 西安: 西安建筑科技大学, 2021. DOI: 10.27393/d.cnki.gxazu.2021.000728. |
Chu R N. Calculation of CH4 and N2O emissions and analysis of emission reduction potential in Shanxi province[D]. Xi’an: Xi’an University of Architecture and Technology, 2021. DOI: 10.27393/d.cnki.gxazu.2021.000728 (in Chinese) | |
[16] | 刘文革, 徐鑫, 韩甲业, 等. 碳中和目标下煤矿甲烷减排趋势模型及关键技术[J]. 煤炭学报, 2022, 47 (1): 470-479. |
Liu W G, Xu X, Han J Y, et al. Trend model and key technology of coal mine methane emission reduction aiming for the carbon neutrality[J]. Journal of China Coal Society, 2022, 47 (1): 470-479 (in Chinese) | |
[17] | 蔡松锋, 黄德林. 我国农业源温室气体技术减排的影响评价: 基于一般均衡模型的视角[J]. 北京农业职业学院学报, 2011, 25 (2): 24-29. |
Cai S F, Huang D L. Assessment of the impact of agricultural greenhouse gas emission reduction technologies in China: a perspective based on the general equilibrium model[J]. Journal of Beijing Agricultural Vocation College, 2011, 25 (2): 24-29 (in Chinese) | |
[18] | 瞿思佳. 基于GIS-SD中国垃圾填埋场甲烷排放趋势及减排措施研究[D]. 重庆: 重庆交通大学, 2018. |
Qu S J. A study on trends and reduction measures of methane emission in China’s landfills based on GIS-SD model[D]. Chongqing: Chongqing Jiaotong University, 2018 (in Chinese) | |
[19] | 国家发展和改革委员会. 中华人民共和国气候变化初始国家信息通报[R/OL]. 2004 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524224387926.pdf. |
National Development and Reform Commission. The People’s Republic of China initial national communication on climate change[R/OL]. 2004 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524224387926.pdf (in Chinese) | |
[20] | 国家发展和改革委员会. 中华人民共和国气候变化第二次国家信息通报[R/OL]. 2013 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524738708928.pdf. |
National Development and Reform Commission. The People’s Republic of China second national communication on climate change[R/OL]. 2013 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524738708928.pdf (in Chinese) | |
[21] | 生态环境部. 中华人民共和国气候变化第三次国家信息通报[R/OL]. 2018 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701762678052438.pdf. |
Ministry of Ecological Environment. The People’s Republic of China third national communication on climate change[R/OL]. 2018 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701762678052438.pdf (in Chinese) | |
[22] | 生态环境部. 中华人民共和国气候变化第二次两年更新报告[R/OL]. 2018 [2022-10-21]. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf |
Ministry of Ecological Environment. The People’s Republic of China second biennial update report on climate change[R/OL]. 2018 [2022-10-21]. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf (in Chinese) | |
[23] | 生态环境部. 中华人民共和国气候变化第四次国家信息通报[R/OL]. 2023 [2024-01-25]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717234502302.pdf. |
Ministry of Ecological Environment. The People’s Republic of China fourth national communication on climate change[R/OL]. 2023 [2024-01-25]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717234502302.pdf (in Chinese) | |
[24] | 生态环境部. 中华人民共和国气候变化第三次两年更新报告[R/OL]. 2023 [2024-01-25]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717236049262.pdf. |
Ministry of Ecological Environment. The People’s Republic of China third biennial update report on climate change[R/OL]. 2023 [2024-01-25]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717236049262.pdf. (in Chinese) | |
[25] | European Commission. Emissions Database for Global Atmospheric Research (EDGAR v8.0): global greenhouse gas emissions[EB/OL]. 2023 [2024-01-25]. https://edgar.jrc.ec.europa.eu/dataset_ghg80 |
[26] | US EPA. Inventory of U.S.greenhouse gas emissions and sinks: 1990-2021[R/OL]. 2023 [2024-01-25]. https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf |
[27] | World Bank. World Bank national accounts data[EB/OL]. 2022 [2022-10-14]. https://data.worldbank.org/indicator/NY.GNP.PCAP.CD |
[28] | European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions: on an EU strategy to reduce methane emissions[EB/OL]. 2020 [2022-10-21]. https://energy.ec.europa.eu/system/files/2020-10/eu_methane_strategy_0.pdf |
[29] | The European Parliament and the Council. Regulation (EU) 2024/1787 of the European Parliament and of the Council of 13 June 2024 on the reduction of methane emissions in the energy sector and amending Regulation (EU) 2019/942.[EB/OL]. [2024-09-11]. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401787 |
[30] | The White House Office of Domestic Climate Policy. U.S. Methane emissions reduction action plan[EB/OL]. 2021 [2022-10-21]. https://www.whitehouse.gov/wp-content/uploads/2021/11/US-Methane-Emissions-Reduction-Action-Plan-1.pdf |
[31] | US Congress. Public law No: 117-169 H.R.5376 inflation reduction act of 2022[EB/OL]. 2022 [2022-10-21]. https://www.congress.gov/117/plaws/publ169/PLAW-117publ169.pdf |
[32] | The White House. Delivering on the U.S. methane emissions reduction action plan[EB/OL]. 2022 [2024-03-07]. https://whitehouse.gov/wp-content/uploads/2022/11/US-Methane-Emissions-Reduction-Action-Plan-Update.pdf |
[33] | US EPA. Standards of performance for new, reconstructed, and modified sources and emissions guidelines for existing sources: oil and natural gas sector climate review[EB/OL]. 2023 [2024-03-07]. https://www.epa.gov/system/files/documents/2023-12/eo12866_oil-and-gas-nsps-eg-climate-review-2060-av16-final-rule-20231130.pdf |
[34] | Environment and Climate Change Canada. Faster and further: Canada’s methane strategy[EB/OL]. 2022 [2024-03-07]. https://publications.gc.ca/collections/collection_2022/eccc/En4-491-2022-eng.pdf |
[35] | Government of Canada. Regulations respecting reduction in the release of methane and certain volatile organic compounds (upstream oil and gas sector) (SOR/2018-66) [EB/OL]. 2023[2024-03-07]. https://laws-lois.justice.gc.ca/PDF/SOR-2018-66.pdf |
[36] | 杨霖, 杨儒浦, 刘金淼, 等. 甲烷控排的国际进展与经验借鉴[J]. 环境经济, 2023 (24): 38-45. |
Yang L, Yang R P, Liu J M, et al. International progress and experience reference in methane emission control[J]. Environmental Economy, 2023 (24): 38-45 (in Chinese) | |
[37] | 惠婧璇, 朱松丽. 全球甲烷控排政策措施评述及其对中国的启示和建议[J]. 气候变化研究进展, 2023, 19 (6): 683-692. |
Hui J X, Zhu S L. Overview on global policies and measures to control methane emissions and its implications for China[J]. Climate Change Research, 2023, 19 (6): 683-692 (in Chinese) | |
[38] | 柴麒敏. 美丽中国愿景下我国碳达峰、碳中和战略的实施路径研究[J]. 环境保护, 2022, 50 (6): 21-25. |
Chai Q M. Study on the transition pathways towards carbon emission peak and neutrality in Beautiful China perspective[J]. Environmental Protection, 2022, 50 (6): 21-25 (in Chinese) | |
[39] | 陈卫. 中国人口负增长与老龄化趋势预测[J]. 社会科学辑刊, 2022 (5): 133-144. |
Chen W. Forecasting negative population growth and population ageing in China[J]. Social Science Journal, 2022 (5): 133-144 (in Chinese) | |
[40] | 胡鞍钢, 刘生龙. 中国实现现代化经济社会结构的展望[J]. 山东大学学报 (哲学社会科学版), 2018 (2): 1-8. |
Hu A G, Liu S L. An outlook on the economic and social structure of modernization in China[J]. Journal of Shandong University (Philosophy and Social Sciences), 2018 (2): 1-8 (in Chinese) | |
[41] | 胡安俊. 2035年中国的城镇化率与城市群主体空间形态[J]. 技术经济, 2023, 42 (5): 174-188. |
Hu A J. Prediction of urbanization rate and main spatial form of urban agglomerations in China in 2035[J]. Journal of Technology Economics, 2023, 42 (5): 174-188 (in Chinese) | |
[42] | 秦越. 中国居民肉类消费特征与趋势研究[D]. 北京: 中国农业科学院, 2022. DOI: 10.27630/d.cnki.gznky.2022.000424. |
Qin Y. Study on the characteristics and trend of Chinese residents’ meat consumption[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022 (in Chinese) | |
[43] | 许行行. 不同煤级储层煤层气成分与含量对比研究[D]. 徐州: 中国矿业大学, 2024. DOI: 10.27623/d.cnki.gzkyu.2023.000419. |
Xu H H. Comparative study on composition and content of coalbed methane in different coal rank reservoirs[D]. Xuzhou: China University of Mining and Technology, 2024. DOI: 10.27623/d.cnki.gzkyu.2023.000419 (in Chinese) | |
[44] | Kern J S, Zitong G, Ganlin Z, et al. Spatial analysis of methane emissions from paddy soils in China and the potential for emissions reduction[J]. Nutrient Cycling in Agroecosystems, 1997, 49: 181-195 |
[45] | Minamikawa K, Fumoto T, Itoh M, et al. Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model[J]. Biology and Fertility of Soils, 2014, 50: 879-889 |
[46] | Lu W, Chen W, Duan B, et al. Methane emissions and mitigation options in irrigated rice fields in Southeast China[J]. Nutrient Cycling in Agroecosystems, 2000, 58: 65-73 |
[47] | Nicholas C, Arti B, Julia D, et al. Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield[J]. Agriculture, Ecosystems & Environment, 2021: 318. DOI: 10.1016/j.agee.2021.107571 |
[48] | Wang H H, Shen M X, Hui D F, et al. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.) -wheat (Triticum aestivum L.) cropping system[J]. Soil and Tillage Research, 2019, 195. DOI: 10.1016/j.still.2019.104377 |
[49] | Li R C, Tian Y G, Wang F, et al. Optimizing the rate of straw returning to balance trade-offs between carbon emission budget and rice yield in China[J]. Sustainable Production and Consumption, 2024, 47: 166-177 |
[50] |
Ngámbi J W, Selapa M J, Brown D, et al. The effect of varying levels of purified condensed tannins on performance, blood profile, meat quality and methane emission in male Bapedi sheep fed grass hay and pellet-based diet[J]. Tropical Animal Health and Production, 2022, 54: 263. DOI: 10.1007/s11250-022-03268-7
pmid: 35960378 |
[51] |
安济山, 万发春, 沈维军, 等. 多维度调控反刍动物甲烷减排的研究进展[J]. 动物营养学报, 2022, 34 (11): 6842-6850.
doi: 10.3969/j.issn.1006-267x.2022.11.004 |
An J S, Wan F C, Shen W J, et al. Research progress on multi-dimensional regulation measures of reducing methane emission in ruminants[J]. Chinese Journal of Animal Nutrition, 2022, 34 (11): 6842-6850 (in Chinese)
doi: 10.3969/j.issn.1006-267x.2022.11.004 |
|
[52] | 汪诗平, Wilkes A, 汪亚运, 等. 放牧阉牦牛提前出栏甲烷排放强度减排潜力探讨[J]. 环境科学, 2014, 35 (8): 3225-3229. |
Wang S P, Wilkes A, Wang Y Y, et al. Discussion on reduction potential of CH4 emission intensity for early off-take practice of grazing yak[J]. Environmental Science, 2014, 35 (8): 3225-3229 (in Chinese) | |
[53] | Zhang N, Qian H Y, Li H X, et al. Effect of warming on rice yield and methane emissions in a Chinese tropical double-rice cropping system[J]. Agriculture, Ecosystems & Environment, 2023: 348. DOI: 10.1016/j.agee.2023.108409 |
[54] |
杨璐, 李夏菲, 于书霞, 等. 湖北省猪粪管理温室气体减排潜力分析[J]. 资源科学, 2016, 38 (3): 557-564.
doi: 10.18402/resci.2016.03.18 |
Yang L, Li X F, Yu S X, et al. The mitigation potential of greenhouse gas emissions from pig manure management in Hubei[J]. Resources Science, 2016, 38 (3): 557-564 (in Chinese)
doi: 10.18402/resci.2016.03.18 |
|
[55] | 陈瑞蕊, 王一明, 胡君利, 等. 畜禽粪便管理系统中甲烷的产排特征及减排对策[J]. 土壤学报, 2012, 49 (4): 815-823. |
Chen R R, Wang Y M, Hu J L, et al. Methane emission and mitigation strategies in animal manure management system[J]. Acta Pedologica Sinica, 2012, 49 (4): 815-823 (in Chinese) | |
[56] | 王琛, 孙治国, 付友先, 等. 填埋场产甲烷影响因素及减排技术研究进展[J]. 山东化工, 2022, 51 (16): 104-106, 110. |
Wang C, Sun Z G, Fu Y X, et al. Research progress on influencing factors and reduction technologies of methane emissions from landfills[J]. Shandong Chemical Industry, 2022, 51 (16): 104-106, 110 (in Chinese) | |
[57] |
李颖, 武学, 孙成双, 等. 基于低碳发展的北京城市生活垃圾处理模式优化[J]. 资源科学, 2021, 43 (8): 1574-1588.
doi: 10.18402/resci.2021.08.06 |
Li Y, Wu X, Sun C S, et al. Optimization of Beijing municipal solid waste treatment model based on low-carbon development[J]. Resources Science, 2021, 43 (8): 1574-1588 (in Chinese)
doi: 10.18402/resci.2021.08.06 |
|
[58] | 马翠梅, 高敏惠, 褚振华. 中国煤矿甲烷排放标准执行情况及政策建议[J]. 世界环境, 2021 (5): 47-49. |
Ma C M, Gao M H, Chu Z H. Implementation of China’s emission standard of coalbed methane/coal mine gas and related policy recommendations[J]. World Environment, 2021 (5): 47-49 (in Chinese) | |
[59] | Daniels T L. The potential of nature-based solutions to reduce greenhouse gas emissions from US agriculture[J]. Socio-Ecological Practice Research, 2022, 4: 251-265 |
[60] | 曾楠, 刘桂环, 张洁清, 等. 基于自然的解决方案的农业甲烷减排路径及对策研究[J]. 环境保护, 2022, 50 (7): 54-58. |
Zeng N, Liu G H, Zhang J Q, et al. Nature-based solutions for agricultural methane emission reduction[J]. Environmental Protection, 2022, 50 (7): 54-58 (in Chinese) |
[1] | WU Pei-Ze, CHEN Sha, LIU Ying-Ying, LI Xiao-Tong, DU Zhan-Xia, CUI Shu-Fen, JIANG Ke-Jun. Low Emissions Analysis Platform (LEAP): applications and challenges in addressing climate change [J]. Climate Change Research, 2024, 20(5): 611-623. |
[2] | YUAN Jia-Shuang, QIU Shuang. A review analysis of methane research progress related to IPCC AR6 and its implications for China [J]. Climate Change Research, 2024, 20(3): 327-336. |
[3] | LIU Qiang, TENG Fei, ZHANG Lin-Yao. The improvement and recalculation of China’s coal methane emission inventory based on a dynamic mine-level database [J]. Climate Change Research, 2023, 19(6): 704-713. |
[4] | GAO Wen-Kang, HU Jie, MA Zhan-Yun, GAO Dong, LIU Shu-Le, LI Zhao-Meng, YAN Wei, GENG Jin-Ze, GAO Qing-Xian. Global methane emission status and characteristics based on greenhouse gas inventory in UNFCCC Annex I countries [J]. Climate Change Research, 2023, 19(6): 693-703. |
[5] | HUI Jing-Xuan, ZHU Song-Li. Overview on global policies and measures to control methane emissions and its implications for China [J]. Climate Change Research, 2023, 19(6): 683-692. |
[6] | HUA Er-Shi, CHEN Min-Peng, CUI Yan-Rong. Analysis of the impact of healthy diet on agricultural methane emissions [J]. Climate Change Research, 2023, 19(5): 559-572. |
[7] | QIN Xiao-Bo, WANG Jin-Ming, WANG Bin, WAN Yun-Fan. Status of methane emissions from paddy fields, mitigation technologies and strategic pathways for low-carbon production [J]. Climate Change Research, 2023, 19(5): 541-558. |
[8] | YANG Ru-Pu, FENG Xiang-Zhao, WANG Min, LI Li-Ping. Analysis on the driving forces of methane emissions from solid waste treatment in G7 countries [J]. Climate Change Research, 2023, 19(5): 573-581. |
[9] | FAN Xing, LI Lu, QIN Yuan-Yuan, GAO Xiang. The pathway from carbon peak to carbon neutrality in major developed economies and its insights [J]. Climate Change Research, 2023, 19(1): 102-115. |
[10] | LIAO Hong, XIE Pei-Fu. The roles of short-lived climate forcers in a changing climate [J]. Climate Change Research, 2021, 17(6): 685-690. |
[11] | WANG Li-Ning, CHEN Wen-Ying, DAI Jia-Quan, XIANG Zheng-Jian, GONG Jin-Shuang. Research on intelligent interconnection reshaping China’s energy system [J]. Climate Change Research, 2021, 17(2): 204-211. |
[12] | WANG Ke, LIU Fang-Ming, YIN Ming-Jian, LIU Jun-Ling. Research on China’s carbon emissions pathway under the 1.5℃ target [J]. Climate Change Research, 2021, 17(1): 7-17. |
[13] | Ming XUE,Yi-Bin WENG,Guang-Quan LIU,Xing-Chun LI,Xiang LI,Sheng-Min YU,Xiang-Yu CUI,Lei SONG. Current status on fugitive methane emission measurements and inventory during oil and gas production [J]. Climate Change Research, 2019, 15(2): 187-196. |
[14] | Yuan LIU,Dan-Ni SUN,Jian-Jun ZHANG,Ke-An WU,Jing ZHENG. Measures analysis for HFC-23 emission mitigation in China under the Kigali Amendment to the Montreal Protocol [J]. Climate Change Research, 2018, 14(4): 423-428. |
[15] | Xie Bing, Zhang Hua,Yang Dongdong. A Modeling Study of Effective Radiative Forcing and Climate Response Due to the Change in Methane Concentration [J]. Climate Change Research, 2017, 13(1): 83-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|