|
Climate Change Research ›› 2023, Vol. 19 ›› Issue (4): 431-445.doi: 10.12006/j.issn.1673-1719.2022.266
• Impacts of Climate Change • Previous Articles Next Articles
GAO Yun-Xiang1, LI Ke-Ke1, ZHANG Wen-Ting1,2(), WANG Tian-Wei1, LI Shan1
Received:
2022-11-24
Revised:
2023-01-18
Online:
2023-07-30
Published:
2023-08-02
GAO Yun-Xiang, LI Ke-Ke, ZHANG Wen-Ting, WANG Tian-Wei, LI Shan. Spatio-temporal evolution and projection of urban heat island in China under the shared socioeconomic pathways[J]. Climate Change Research, 2023, 19(4): 431-445.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.266
Fig. 1 Spatial distribution of annual average surface urban heat island intensity (SUHI) in China from 2012 to 2018. (a) 7-year mean, (b) 7-year difference, (c) box plot. (Data of Hong Kong, Macao and Taiwan are not included. IQR stands for interquartile range, the same below)
[1] | 任杲, 宋迎昌, 蒋金星. 改革开放40年中国城市化进程研究[J]. 宁夏社会科学, 2019 (1): 23-31. |
Ren G, Song Y C, Jiang J X. Research on the Chinese urbanization process in the past 40 years from the Reform and Opening-up[J]. Ningxia Social Sciences, 2019 (1): 23-31 (in Chinese) | |
[2] | 姚远, 陈曦, 钱静. 城市地表热环境研究进展[J]. 生态学报, 2018, 38 (3): 1134-1147. |
Yao Y, Chen X, Qian J. Research progress on the thermal environment of the urban surfaces[J]. Acta Ecologica Sinica, 2018, 38 (3): 1134-1147 (in Chinese) | |
[3] | Oke T R. The energetic basis of the urban heat island[J]. Quarterly Journal of the Royal Meteorological Society, 1982, 108 (455): 1-24 |
[4] |
彭保发, 石忆邵, 王贺封, 等. 城市热岛效应的影响机理及其作用规律: 以上海市为例[J]. 地理学报, 2013, 68 (11): 1461-1471.
doi: 10.11821/dlxb201311002 |
Peng B F, Shi Y S, Wang H F, et al. The impacting mechanism and laws of function of urban heat islands effect: a case study of Shanghai[J]. Acta Geographica Sinica, 2013, 68 (11): 1461-1471 (in Chinese) | |
[5] | Yu Z W, Yao Y W, Yang G Y, et al. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995-2015) of southern China[J]. Science of the Total Environment, 2019: 674 |
[6] | 林荣平, 祁新华, 叶士琳. 沿海河谷盆地城市热岛时空特征及驱动机制[J]. 生态学报, 2017, 37 (1): 294-304. |
Lin R P, Qi X H, Ye S L. Spatial-temporal characteristics of urban heat islands and driving mechanisms in a coastal valley-basin city: a case study of Fuzhou city[J]. Acta Ecologica Sinica, 2017, 37 (1): 294-304 (in Chinese) | |
[7] |
Zhou D C, Xiao J F, Bonafoni S, et al. Satellite remote sensing of surface urban heat islands: progress, challenges, and perspectives[J]. Remote Sensing, 2018, 11 (1): 48
doi: 10.3390/rs11010048 URL |
[8] | 曹畅, 李旭辉, 张弥, 等. 中国城市热岛时空特征及其影响因子的分析[J]. 环境科学, 2017, 38 (10): 3987-3997. |
Cao C, Li X H, Zhang M, et al. Correlation analysis of the urban heat island effect and its impact factors in China[J]. Environmental Science, 2017, 38 (10): 3987-3997 (in Chinese) | |
[9] | 牛陆, 张正峰, 彭中, 等. 中国地表城市热岛驱动因素及其空间异质性[J]. 中国环境科学, 2022, 42 (2): 945-953. |
Niu L, Zhang Z F, Peng Z, et al. Research on China’s surface urban heat island drivers and its spatial heterogeneity[J]. China Environmental Science, 2022, 42 (2): 945-953 (in Chinese) | |
[10] |
Zhou D C, Zhao S Q, Liu S G, et al. Surface urban heat island in China’s 32 major cities: spatial patterns and drivers[J]. Remote Sensing of Environment, 2014, 152: 51-61
doi: 10.1016/j.rse.2014.05.017 URL |
[11] | 岳亚飞, 詹庆明, 王炯. 城市热环境的规划改善策略研究: 以武汉市为例[J]. 长江流域资源与环境, 2018, 27 (2): 286-295. |
Yue Y F, Zhan Q M, Wang J. Optimizing the urban thermal environment: a case study in Wuhan, China[J]. Resources and Environment in the Yangtze Basin, 2018, 27 (2): 286-295 (in Chinese) | |
[12] | Yang Y J, Zheng Z F, Yim S Y, et al. PM2.5 pollution modulates wintertime urban heat island intensity in the Beijing-Tianjin-Hebei megalopolis, China[J]. Geophysical Research Letters, 2020, 47 (1): e2019GL084288 |
[13] |
樊智宇, 詹庆明, 刘慧民, 等. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019, 21 (2): 226-235.
doi: 10.12082/dqxxkx.2018.180495 |
Fan Z Y, Zhan Q M, Liu H M, et al. Spatial-temporal distribution of urban heat island and the heating effect of impervious surface in summer in Wuhan[J]. Journal of Geo-information Science, 2019, 21 (2): 226-235 (in Chinese) | |
[14] |
江斯达, 占文凤, 杨俊, 等. 局地气候分区框架下城市热岛时空分异特征研究进展[J]. 地理学报, 2020, 75 (9): 1860-1878.
doi: 10.11821/dlxb202009004 |
Jiang S D, Zhan W F, Yang J, et al. Urban heat island studies based on local climate zones: a systematic overview[J]. Acta Geographica Sinica, 2020, 75 (9): 1860-1878 (in Chinese)
doi: 10.11821/dlxb202009004 |
|
[15] |
Heaviside C, Vardoulakis S, Cai X M. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK[J]. Environmental Health, 2016, 15 (1): 49-59
doi: 10.1186/s12940-016-0134-z URL |
[16] |
Abunnasr Y, Mhawej M. Downscaled night air temperatures between 2030 and 2070: the case of cities with a complex-and heterogeneous-topography[J]. Urban Climate, 2021, 40: 100998
doi: 10.1016/j.uclim.2021.100998 URL |
[17] |
Hoffmann P, Krueger O, Schlünzen K H. A statistical model for the urban heat island and its application to a climate change scenario[J]. International Journal of Climatology, 2012, 32 (8): 1238-1248
doi: 10.1002/joc.2348 URL |
[18] |
Lo Y T E, Mitchell D M, Bohnenstengel S I, et al. UK climate projections: summer daytime and nighttime urban heat island changes in England’s major cities[J]. Journal of Climate, 2020, 33 (20): 9015-9030
doi: 10.1175/JCLI-D-19-0961.1 URL |
[19] | Rosenzweig C, Solecki W D, Parshall L, et al. Characterizing the urban heat island in current and future climates in New Jersey[J]. Global Environmental Change Part B: Environmental Hazards, 2005, 6 (1): 51-62 |
[20] | 丁小江, 钟方雷, 毛锦凰, 等. 共享社会经济路径下中国各省城市化水平预测[J]. 气候变化研究进展, 2018, 14 (4): 392-401. |
Ding X J, Zhong F L, Mao J H, et al. Provincial urbanization projected to 2050 under the shared socioeconomic pathways in China[J]. Climate Change Research, 2018, 14 (4): 392-401 (in Chinese) | |
[21] | 姜彤, 赵晶, 景丞, 等. IPCC共享社会经济路径下中国和分省人口变化预估[J]. 气候变化研究进展, 2017, 13 (2): 128-137. |
Jiang T, Zhao J, Jing C, et al. National and provincial population projected to 2100 under the shared socioeconomic pathways in China[J]. Climate Change Research, 2017, 13 (2): 128-137 (in Chinese) | |
[22] | 姜彤, 赵晶, 曹丽格, 等. 共享社会经济路径下中国及分省经济变化预测[J]. 气候变化研究进展, 2018, 14 (1): 50-58. |
Jiang T, Zhao J, Cao L G, et al. Projection of national and provincial economy under the shared socioeconomic pathways in China[J]. Climate Change Research, 2018, 14 (1): 50-58 (in Chinese) | |
[23] | 张帆, 徐宁, 吴锋. 共享社会经济路径下中国2020—2100年碳排放预测研究[J]. 生态学报, 2021, 41 (24): 9691-9704. |
Zhang F, Xu N, Wu F. Research on China’s CO2 emissions projections from 2020 to 2100 under the shared socioeconomic pathways[J]. Acta Ecologica Sinica, 2021, 41 (24): 9691-9704 (in Chinese) | |
[24] | 汤琦, 余珮珩, 陈泽怡, 等. 共享社会经济路径下土地利用变化模拟[J]. 水土保持研究, 2022, 29 (1): 301-310. |
Tang Q, Yu P H, Chen Z Y, et al. Simulation of land use change based on the shared socioeconomic pathways[J]. Research of Soil and Water Conservation, 2022, 29 (1): 301-310 (in Chinese) | |
[25] | 张凤. 祁连山多年冻土热状态变化及其对碳释放的影响研究[D]. 兰州: 兰州大学, 2020: 5-7. |
Zhang F. Change of permafrost thermal states and its impact on carbon release in the Qilian Mountains[D]. Lanzhou: Lanzhou University, 2020: 5-7 (in Chinese) | |
[26] |
Benz S A, Davis S J, Burney J A. Drivers and projections of global surface temperature anomalies at the local scale[J]. Environmental Research Letters, 2021, 16 (6): 064093
doi: 10.1088/1748-9326/ac0661 |
[27] |
Huang K N, Li X, Liu X P, et al. Projecting global urban land expansion and heat island intensification through 2050[J]. Environmental Research Letters, 2019, 14 (11): 114037
doi: 10.1088/1748-9326/ab4b71 |
[28] |
Wang J, Huang B, Fu D J, et al. Spatiotemporal variation in surface urban heat island intensity and associated determinants across major Chinese cities[J]. Remote Sensing, 2015, 7 (4): 3670-3689
doi: 10.3390/rs70403670 URL |
[29] | 国家统计局. 第七次全国人口普查公报(第七号)[R/OL]. 2021 [2021-05-11]. http://www.stats.gov.cn/sj/tjgb/rkpcgb/qgrkpcgb/202302/t20230206_1902007.html. |
National Bureau of Statistics of the People’s Republic of China. Seventh national census bulletin (No.7)[R/OL]. 2021 [2021-05-11]. http://www.stats.gov.cn/sj/tjgb/rkpcgb/qgrkpcgb/202302/t20230206_1902007.html. (in Chinese) | |
[30] |
Liao W L, Liu X P, Xu X Y, et al. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China[J]. Science Bulletin, 2020, 65 (22): 1935-1947
doi: 10.1016/j.scib.2020.07.014 pmid: 36738059 |
[31] | 赵冰, 毛克彪, 蔡玉林, 等. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32 (2): 233-240. |
Zhao B, Mao K B, Cai Y L, et al. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Natural Resources, 2020, 32 (2): 233-240 (in Chinese) | |
[32] |
Peng J, Ma J, Liu Q Y, et al. Spatial-temporal change of land surface temperature across 285 cities in China: an urban-rural contrast perspective[J]. Science of the Total Environment, 2018, 635: 487-497
doi: 10.1016/j.scitotenv.2018.04.105 URL |
[33] |
Rozenfeld H D, Rybski D, Andrade J S, et al. Laws of population growth[J]. Proceedings of the National Academy of Sciences, 2008, 105 (48): 18702-18707
doi: 10.1073/pnas.0807435105 URL |
[34] |
Niu L, Tang R L, Jiang Y Z, et al. Spatiotemporal patterns and drivers of the surface urban heat island in 36 major cities in China: a comparison of two different methods for delineating rural areas[J]. Sustainability, 2020, 12 (2): 478
doi: 10.3390/su12020478 URL |
[35] |
Manoli G, Fatichi S, Schl?pfer M, et al. Magnitude of urban heat islands largely explained by climate and population[J]. Nature, 2019, 573 (7772): 55-60
doi: 10.1038/s41586-019-1512-9 |
[36] | Dutilleul P, Legendre P. Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept[J]. Oikos, 1993: 152-171 |
[37] |
Szymanowski M, Kryza M. Local regression models for spatial interpolation of urban heat island: an example from Wroc?aw, SW Poland[J]. Theoretical and Applied Climatology, 2012, 108 (1): 53-71
doi: 10.1007/s00704-011-0517-6 URL |
[38] |
Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28 (4): 281-298
doi: 10.1111/gean.1996.28.issue-4 URL |
[39] |
Liu H M, Zhan Q M, Gao S H, et al. Seasonal variation of the spatially non-stationary association between land surface temperature and urban landscape[J]. Remote Sensing, 2019, 11 (9): 1016
doi: 10.3390/rs11091016 URL |
[40] |
Zhou X L, Wang Y C. Dynamics of land surface temperature in response to land-use/cover change[J]. Geographical Research, 2011, 49 (1): 23-36
doi: 10.1111/geor.2011.49.issue-1 URL |
[41] | 孟斌, 王劲峰, 张文忠, 等. 基于空间分析方法的中国区域差异研究[J]. 地理科学, 2005 (4): 11-18. |
Meng B, Wang J F, Zhang W Z, et al. Evaluation of regional disparity in China based on spatial analysis[J]. Scientia Geographica Sinica, 2005 (4): 11-18 (in Chinese) | |
[42] | 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报(信息科学版), 2020, 45 (9): 1356-1366. |
Lu B B, Ge Y, Qin K, et al. A review on geographically weighted regression[J]. Geomatics and Information Science of Wuhan University, 2020, 45 (9): 1356-1366 (in Chinese) | |
[43] |
Yao R, Wang L C, Huang X, et al. Interannual variations in surface urban heat island intensity and associated drivers in China[J]. Journal of Environmental Management, 2018, 222: 86-94
doi: S0301-4797(18)30549-8 pmid: 29804036 |
[44] | 林平. 福州城市热岛机制与预测[D]. 福州: 福建师范大学, 2019: 17-18. |
Lin P. Urban heat island mechanism and forecast in Fuzhou[D]. Fuzhou: Fujian Normal University, 2019: 17-18 (in Chinese) | |
[45] | 项小云, 杜嘉, 宋开山, 等. 湿地对福州市热岛效应影响遥感分析[J]. 地球环境学报, 2021, 12 (4): 411-424. |
Xiang X Y, Du J, Song K S, et al. The impact of wetland on heat island effect using remote sensing technology in Fuzhou[J]. Journal of Earth Environment, 2021, 12 (4): 411- 424 (in Chinese) | |
[46] | 王媛媛, 任宏, 宫诗玮. 中国31个主要城市热岛与大气污染间关系研究[J]. 环境科学与技术, 2022, 45 (S1): 150-158. |
Wang Y Y, Ren H, Gong S W. Relationship between urban heat island and air pollution in 31 major cities in China[J]. Environmental Science & Technology, 2022, 45 (S1): 150-158 (in Chinese) | |
[47] | 陆丰刚. 人口流失影响了东北地区经济增长吗? 基于东北地区户籍人口流失测算数据[J]. 人口与发展, 2021, 27 (5): 98-110, 120. |
Lu F G. Does population loss harm the economic growth in Northeast China? Based on the measurement on population loss in Northeast China[J]. Population and Development, 2021, 27 (5): 98-110, 120 (in Chinese) | |
[48] | 李宇, 周德成, 闫章美. 中国84个主要城市大气热岛效应的时空变化特征及影响因子[J]. 环境科学, 2021, 42 (10): 5037-5045. |
Li Y, Zhou D C, Yan Z M. Spatiotemporal variations in atmospheric urban heat island effects and their driving factors in 84 major Chinese cities[J]. Environmental Science, 2021, 42 (10): 5037-5045 (in Chinese)
doi: 10.1021/es087183q URL |
|
[49] |
Zhu D Y, Zhou Q, Liu M M, et al. Non-optimum temperature-related mortality burden in China: addressing the dual influences of climate change and urban heat islands[J]. Science of the Total Environment, 2021, 782: 146760
doi: 10.1016/j.scitotenv.2021.146760 URL |
[50] | 徐飞, 沈迟, 许景权. 国土空间规划环境影响评价编制逻辑和构建要点[J]. 城市规划学刊, 2022 (2): 35-40. |
Xu F, Shen C, Xu J Q. The rationales and structure of environmental impact assessment in territorial spatial planning[J]. Urban Planning Forum, 2022 (2): 35-40 (in Chinese) | |
[51] | 张尚武, 刘振宇, 王昱菲. “三区三线”统筹划定与国土空间布局优化: 难点与方法思考[J]. 城市规划学刊, 2022 (2): 12-19. |
Zhang S W, Liu Z Y, Wang Y F. Delineation of the “three zones and three lines” and optimization of spatial layout: obstacles and methodological thinking[J]. Urban Planning Forum, 2022 (2): 12-19 (in Chinese) |
[1] | LIU Yuan-Xin, HE Shuo, JIANG Ya-Jing, LUO Xu, YUAN Jia-Hai. Spatial-temporal decomposition of carbon emissions in China’s four major urban agglomerations [J]. Climate Change Research, 2024, 20(2): 231-241. |
[2] | LI Yu, LI Ya-Qin, ZHAO Ju-Shuang. A comparative study of atmospheric and surface urban heat island effects in China’s major cities [J]. Climate Change Research, 2023, 19(5): 605-615. |
[3] | Su Buda ;Jiang Tong Ren Guoyu et al.. Trends of Extreme Precipitation over the Yangtze River Basin of China in 1960-2004 [J]. Climate Change Research, 2007, 03(00): 45-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|