|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (1): 19-30.doi: 10.12006/j.issn.1673-1719.2021.230
Special Issue: IPCC第六次评估报告WGI解读专栏
• Special Section on the Sixth Assessment Report of IPCC: WGI • Previous Articles Next Articles
HUA Li-Juan1(), YU Yong-Qiang2,3
Received:
2021-10-08
Revised:
2021-11-08
Online:
2022-01-30
Published:
2021-12-22
HUA Li-Juan, YU Yong-Qiang. Long term variation and projection of ocean circulation[J]. Climate Change Research, 2022, 18(1): 19-30.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.230
Fig. 1 Observed and projected mixed layer depth in winter and summer. (The winter row shows DJF in the Northern Hemisphere and JJA in the Southern Hemisphere, and the summer row shows JJA in the Northern Hemisphere and DJF in the Southern Hemisphere)
[1] | IPCC. Climate change 2021: the physical science basis[M/OL]. 2021 [2021-08-06].https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf |
[2] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 |
[3] | IPCC. IPCC special report on the ocean and cryosphere in a changing climate [M]. Cambridge: Cambridge University Press, 2019 |
[4] |
Holliday N P, Bersh M, Berx B, et al. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic[J]. Nature Communications, 2020, 11(1): 585. DOI: 10.1038/s41467-020-14474-y
doi: 10.1038/s41467-020-14474-y pmid: 31996687 |
[5] |
Cheng L, Trenberth K E, Gruber N, et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle[J]. Journal of Climate, 2020, 33(23): 10357-10381. DOI: 10.1175/JCLI-D-20-0366.1
doi: 10.1175/JCLI-D-20-0366.1 URL |
[6] |
Rye C D, Marshall J, Kelley M, et al. Antarctic glacial melt as a driver of recent southern ocean climate trends[J]. Geophysical Research Letters, 2020, 47(11): e2019GL086892. DOI: 10.1029/2019gl086892
doi: 10.1029/2019gl086892 |
[7] |
Du Y, Zhang Y, Shi J. Relationship between sea surface salinity and ocean circulation and climate change[J]. Science China: Earth Sciences, 2019, 62(5): 771-782. DOI: 10.1007/s11430-018-9276-6
doi: 10.1007/s11430-018-9276-6 URL |
[8] |
Liu C, Liang X, Ponte R M, et al. Vertical redistribution of salt and layered changes in global ocean salinity[J]. Nature Communications, 2019, 10(1): 3445. DOI: 10.1038/s41467-019-11436-x
doi: 10.1038/s41467-019-11436-x URL |
[9] |
Dukhovskoy D S, Yashayaev I, Proshutinsky A, et al. Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic[J]. Journal of Geophysical Research: Oceans, 2019, 124(5): 3333-3360. DOI: 10.1029/2018jc014686
doi: 10.1029/2018JC014686 pmid: 31341755 |
[10] |
Stendardo I, Rhein M, Steinfeldt R. The North Atlantic current and its volume and freshwater transports in the subpolar North Atlantic, time period 1993-2016[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016065. DOI: 10.1029/2020jc016065
doi: 10.1029/2020jc016065 |
[11] |
Li G, Zhang Y H, Xiao J G, et al. Examining the salinity change in the upper Pacific Ocean during the Argo period[J]. Climate Dynamics, 2019, 53(9): 6055-6074. DOI: 10.1007/s00382-019-04912-z
doi: 10.1007/s00382-019-04912-z URL |
[12] |
Levang S J, Schmitt R W. Intergyre salt transport in the climate warming response[J]. Journal of Physical Oceanography, 2020, 50(1): 255-268. DOI: 10.1175/jpo-d-19-0166.1
doi: 10.1175/jpo-d-19-0166.1 URL |
[13] |
Silvy Y, Guilyardi E, Sallée J B, et al. Human-induced changes to the global ocean water masses and their time of emergence[J]. Nature Climate Change, 2020, 10(11): 1030-1036. DOI: 10.1038/s41558-020-0878-x
doi: 10.1038/s41558-020-0878-x URL |
[14] |
Metzner E P, Salzmann M, Gerdes R. Arctic ocean surface energy flux and the cold halocline in future climate projections[J]. Journal of Geophysical Research: Oceans, 2020, 125(2): e2019JC015554. DOI: 10.1029/2019jc015554
doi: 10.1029/2019jc015554 |
[15] |
Parras-Berrocal I M, Vazquez R, Cabos W, et al. The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere-ocean model[J]. Ocean Science, 2020, 16(3): 743-765. DOI: 10.5194/os-16-743-2020
doi: 10.5194/os-16-743-2020 URL |
[16] |
Soto-Navarro J, Jordà G, Amores A, et al. Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble[J]. Climate Dynamics, 2020, 54(3): 2135-2165. DOI: 10.1007/s00382-019-05105-4
doi: 10.1007/s00382-019-05105-4 URL |
[17] |
Li G C, Cheng L J, Zhu J, et al. Increasing ocean stratification over the past half-century[J]. Nature Climate Change, 2020. DOI: 10.1038/s41558-020-00918-2
doi: 10.1038/s41558-020-00918-2 |
[18] |
Yamaguchi R, Suga T. Trend and variability in global upper-ocean stratification since the 1960s[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 8933-8948. DOI: 10.1029/2019jc015439
doi: 10.1029/2019JC015439 |
[19] |
Sallée J B, Pellichero V, Akhoudas C, et al. Summertime increases in upper-ocean stratification and mixed-layer depth[J]. Nature, 2021, 591(7851): 592-598. DOI: 10.1038/s41586-021-03303-x
doi: 10.1038/s41586-021-03303-x URL |
[20] |
Kwiatkowski L, Torres O, Bopp L, et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections[J]. Biogeosciences, 2020, 17(13): 3439-3470. DOI: 10.5194/bg-17-3439-2020
doi: 10.5194/bg-17-3439-2020 URL |
[21] |
Lique C, Johnson H L, Plancherel Y. Emergence of deep convection in the Arctic Ocean under a warming climate[J]. Climate Dynamics, 2018, 50(9): 3833-3847. DOI: 10.1007/s00382-017-3849-9
doi: 10.1007/s00382-017-3849-9 URL |
[22] |
Tsujino H, Urakawa L S, Griffies S M, et al. Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)[J]. Geoscientific Model Development, 2020, 13(8): 3643-3708. DOI: 10.5194/gmd-13-3643-2020
doi: 10.5194/gmd-13-3643-2020 URL |
[23] |
Young I R, Ribal A. Multiplatform evaluation of global trends in wind speed and wave height[J]. Science, 2019, 364(6440): 548-552. DOI: 10.1126/science.aav9527
doi: 10.1126/science.aav9527 pmid: 31023894 |
[24] |
Buckingham C E, Lucas N S, Belcher S E, et al. The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(1): 4066-4094. DOI: 10.1029/2019ms001801
doi: 10.1029/2019ms001801 URL |
[25] |
Li Q, Fox-Kemper B. Comparing ocean surface boundary vertical mixing schemes including langmuir turbulence[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(11): 3545-3592. DOI: 10.1029/2019ms001810
doi: 10.1029/2019ms001810 URL |
[26] |
Dunne J P, Horowitz L W, Adcroft A J, et al. The GFDL Earth system model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2019MS002015. DOI: 10.1029/2019ms002015
doi: 10.1029/2019ms002015 |
[27] |
McWilliams J C. A survey of submesoscale currents[J]. Geoscience Letters, 2019, 6(1): 1-15. DOI: 10.1186/s40562-019-0133-3
doi: 10.1186/s40562-019-0133-3 URL |
[28] |
Danabasoglu G, Lamarque J, Bacmeister J, et al. The community Earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916. DOI: 10.1029/2019ms001916
doi: 10.1029/2019ms001916 |
[29] |
Kelley M, Schmidt G A, Nazarenko L S, et al. GISS-E2.1: configurations and climatology[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(8): e2019MS002025. DOI: 10.1029/2019ms002025
doi: 10.1029/2019ms002025 |
[30] |
Hobday A J, Alexander L V, Perkins S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 2016, 141:227-238. DOI: 10.1016/j.pocean.2015.12.014
doi: 10.1016/j.pocean.2015.12.014 URL |
[31] |
Cheung W W L, Frölicher T L. Marine heatwaves exacerbate climate change impacts for fisheries in the Northeast Pacific[J]. Scientific Reports, 2020, 10(1): 6678. DOI: 10.1038/s41598-020-63650-z
doi: 10.1038/s41598-020-63650-z URL |
[32] |
Hayashida H, Matear R J, Strutton P G, et al. Insights into projected changes in marine heatwaves from a high-resolution ocean circulation model[J]. Nature Communications, 2020, 11(1): 4352. DOI: 10.1038/s41467-020-18241-x
doi: 10.1038/s41467-020-18241-x pmid: 32859903 |
[33] |
Piatt J F, Parrish J K, Renner H M, et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014-2016[J]. PLoS ONE, 2020, 15(1). DOI: 10.1371/journal.pone.0226087
doi: 10.1371/journal.pone.0226087 |
[34] |
Laufkötter C, Zscheischler J, Frölicher T L. High-impact marine heatwaves attributable to human-induced global warming[J]. Science, 2020, 369(6511): 1621-1625. DOI: 10.1126/science.aba0690
doi: 10.1126/science.aba0690 pmid: 32973027 |
[35] |
Li Y, Ren G, Wang Q, et al. More extreme marine heatwaves in the China Seas during the global warming hiatus[J]. Environmental Research Letters, 2019, 14(10): 104010. DOI: 10.1088/1748-9326/ab28bc
doi: 10.1088/1748-9326/ab28bc URL |
[36] |
Yao Y, Wang J, Yin J, et al. Marine heatwaves in China’s marginal seas and adjacent offshore waters: past, present, and future[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015801. DOI: 10.1029/2019jc015801
doi: 10.1029/2019jc015801 |
[37] |
Holbrook N J, Scannell H A, Sen Gupta A, et al. A global assessment of marine heatwaves and their drivers[J]. Nature Communications, 2019, 10(1): 2624. DOI: 10.1038/s41467-019-10206-z
doi: 10.1038/s41467-019-10206-z pmid: 31201309 |
[38] |
Gupta S A, Thomsen M, Benthuysen J A, et al. Drivers and impacts of the most extreme marine heatwaves events[J]. Scientific Reports, 2020, 10(1): 19359. DOI: 10.1038/s41598-020-75445-3
doi: 10.1038/s41598-020-75445-3 pmid: 33168858 |
[39] |
Holbrook N J, Sen Gupta A, Oliver E C J, et al. Keeping pace with marine heatwaves[J]. Nature Reviews Earth & Environment, 2020, 1(9): 482-493. DOI: 10.1038/s43017-020-0068-4
doi: 10.1038/s43017-020-0068-4 |
[40] |
Oliver E C J, Burrows M T, Donat M G, et al. Projected marine heatwaves in the 21st century and the potential for ecological impact[J]. Frontiers in Marine Science, 2019, 6:734. DOI: 10.3389/fmars.2019.00734
doi: 10.3389/fmars.2019.00734 URL |
[41] |
Plecha S M Soares P M M. Global marine heatwave events using the new CMIP6 multi-model ensemble: from shortcomings in present climate to future projections[J]. Environmental Research Letters, 2020, 15(12): 124058. DOI: 10.1088/1748-9326/abc847
doi: 10.1088/1748-9326/abc847 URL |
[42] |
Pilo G S, Holbrook N J, Kiss A E, et al. Sensitivity of marine heatwave metrics to ocean model resolution[J]. Geophysical Research Letters, 2019, 46. DOI: 10.1029/2019gl084928
doi: 10.1029/2019gl084928 |
[43] |
Bock L, Lauer A, Schlund M, et al. Quantifying progress across different CMIP phases with the ESMValTool[J]. Journal of Geophysical Research, 2020, 125(21): e2019JD032321. DOI: 10.1029/2019JD032321
doi: 10.1029/2019JD032321 |
[44] |
Qiao F, Yuan Y, Deng J, et al. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models[J]. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150201. DOI: 10.1098/rsta.2015.0201
doi: 10.1098/rsta.2015.0201 URL |
[45] |
Reichl B G, Hallberg R. A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations[J]. Ocean Modelling, 2018, 132:112-129. DOI: 10.1016/j.ocemod.2018.10.004
doi: 10.1016/j.ocemod.2018.10.004 URL |
[46] |
Caldwell P M, Mametjanov A, Tang Q, et al. The DOE E3SM coupled model version 1: description and results at high resolution[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4095-4146. DOI: 10.1029/2019ms001870
doi: 10.1029/2019MS001870 |
[47] |
Docquier D, Grist J P, Roberts M J, et al. Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport[J]. Climate Dynamics, 2019, 53(7): 4989-5017. DOI: 10.1007/s00382-019-04840-y
doi: 10.1007/s00382-019-04840-y URL |
[48] |
Beadling R L, Russell J L, Stouffer R J, et al. Representation of southern ocean properties across Coupled Model Intercomparison Project generations: CMIP3 to CMIP6[J]. Journal of Climate, 2020, 33:6555-6581. DOI: 10.1175/jcli-d-19-0970.1
doi: 10.1175/jcli-d-19-0970.1 URL |
[49] |
Li J L F, Xu K M, Jiang J H, et al. An overview of CMIP5 and CMIP6 simulated cloud ice, radiation fields, surface wind stress, sea surface temperatures, and precipitation over tropical and subtropical oceans[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15): e2020JD032848. DOI: 10.1029/2020jd032848
doi: 10.1029/2020jd032848 |
[50] |
Chassignet E P, Yeager S G, Fox-Kemper B, et al. Impact of horizontal resolution on global ocean-sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)[J]. Geoscientific Model Development, 2020, 13(9): 4595-4637. DOI: 10.5194/gmd-13-4595-2020
doi: 10.5194/gmd-13-4595-2020 URL |
[51] |
Hewitt H T, Roberts M, Mathiot P, et al. Resolving and parameterising the ocean mesoscale in Earth system models[J]. Current Climate Change Reports, 2020, 6:137-152. DOI: 10.1007/s40641-020-00164-w
doi: 10.1007/s40641-020-00164-w URL |
[52] |
Jackson L C, Roberts M J, Hewitt H T, et al. Impact of ocean resolution and mean state on the rate of AMOC weakening[J]. Climate Dynamics, 2020, 55:1711-1732. DOI: 10.1007/s00382-020-05345-9
doi: 10.1007/s00382-020-05345-9 URL |
[53] |
Sérazin G, Meyssignac B, Penduff T, et al. Quantifying uncertainties on regional sea level change induced by multidecadal intrinsic oceanic variability[J]. Geophysical Research Letters, 2016, 43(15): 8151-8159. DOI: 10.1002/2016gl069273
doi: 10.1002/2016gl069273 URL |
[54] |
Sérazin G, Jaymond A, Leroux S, et al. A global probabilistic study of the ocean heat content low-frequency variability: atmospheric forcing versus oceanic chaos[J]. Geophysical Research Letters, 2017, 44(11): 5580-5589. DOI: 10.1002/2017gl073026.
doi: 10.1002/2017gl073026 URL |
[55] |
Small R J, Bryan F O, Bishop S P, et al. Air-sea turbulent heat fluxes in climate models and observational analyses: what drives their variability?[J]. Journal of Climate, 2019, 32(8): 2397-2421. DOI: 10.1175/jclid-18-0576.1
doi: 10.1175/jclid-18-0576.1 URL |
[56] |
Chelton D B, Xie S P. Coupled ocean-atmosphere interaction at oceanic mesoscales[J]. Oceanography, 2010, 23:52-69. DOI: 10.2307/24860862
doi: 10.2307/24860862 URL |
[57] |
Frenger I, Gruber N, Knutti R, et al. Imprint of southern ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608-612. DOI: 10.1038/ngeo1863
doi: 10.1038/ngeo1863 URL |
[58] |
Han W, Meehl G A, Stammer D, et al. Spatial patterns of sea level variability associated with natural internal climate modes[J]. Surveys in Geophysics, 2017, 38(1): 217-250. DOI: 10.1007/s10712-016-9386-y
doi: 10.1007/s10712-016-9386-y URL |
[59] |
Piecuch C G, Thompson P R, Ponte R M, et al. What caused recent shifts in tropical pacific decadal sea-level trends?[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 7575-7590. DOI: 10.1029/2019jc015339
doi: 10.1029/2019jc015339 URL |
[60] |
Haigh I D, Pickering M D, Green J A, et al. The tides they are a-Changin’: a comprehensive review of past and future non-astronomical changes in tides, their driving mechanisms and future implications[J]. Reviews of Geophysics, 2019. DOI: 10.1029/2018rg000636
doi: 10.1029/2018rg000636 |
[61] |
Varela R, Álvarez I, Santos F, et al. Has upwelling strengthened along worldwide coasts over 1982-2010?[J]. Scientific Reports, 2015, 5:10016. DOI: 10.1038/srep10016
doi: 10.1038/srep10016 pmid: 25952477 |
[62] |
Seo H, Brink K H, Dorman C E, et al. What determines the spatial pattern in summer upwelling trends on the U.S. West Coast?[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8). DOI: 10.1029/2012jc008016
doi: 10.1029/2012jc008016 |
[63] |
Bakun A, Field D B, Redondo-Rodriguez A, et al. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems[J]. Global Change Biology, 2010, 16(4): 1213-1228. DOI: 10.1111/j.1365-2486.2009.02094.x
doi: 10.1111/j.1365-2486.2009.02094.x URL |
[64] |
Sydeman W J, Garcia-Reyes M, Schoeman D S, et al. Climate change and wind intensification in coastal upwelling ecosystems[J]. Science, 2014, 345(6192): 77-80. DOI: 10.1126/science.1251635
doi: 10.1126/science.1251635 pmid: 24994651 |
[65] |
Brady R X, Alexander M A, Lovenduski N S, et al. Emergent anthropogenic trends in California current upwelling[J]. Geophysical Research Letters, 2017, 44(10): 5044-5052. DOI: 10.1002/2017gl072945
doi: 10.1002/2017gl072945 URL |
[66] |
Bakun A. Global climate change and intensification of coastal ocean upwelling[J]. Science, 1990, 247(4939): 198-201. DOI: 10.1126/science.247.4939.198
doi: 10.1126/science.247.4939.198 pmid: 17813287 |
[67] |
García-Reyes M, Sydeman W J, Black B A, et al. Relative influence of oceanic and terrestrial pressure systems in driving upwelling favorable winds[J]. Geophysical Research Letters, 2013, 40(19): 5311-5315. DOI: 10.1002/2013gl057729
doi: 10.1002/2013gl057729 URL |
[68] |
Staten P W, Lu J, Grise K M, et al. Re-examining tropical expansion[J]. Nature Climate Change, 2018, 8(9): 768-775. DOI: 10.1038/s41558-018-0246-2
doi: 10.1038/s41558-018-0246-2 URL |
[69] |
He C, Wu B, Zou L, et al. Responses of the summertime subtropical anticyclones to global warming[J]. Journal of Climate, 2017, 30(16): 6465-6479. DOI: 10.1175/JCLI-D-16-0529.1
doi: 10.1175/JCLI-D-16-0529.1 URL |
[70] |
Cherchi A, Ambrizzi T, Behera S, et al. The response of subtropical highs to climate change[J]. Current Climate Change Reports, 2018, 4(4): 371-382. DOI: 10.1007/s40641-018-0114-1
doi: 10.1007/s40641-018-0114-1 URL |
[71] |
Sylla A, Mignot J, Capet X, et al. Weakening of the Senegalo-Mauritania upwelling system under climate change[J]. Climate Dynamics, 2019, 53:4447-4473. DOI: 10.1007/s00382-019-04797-y
doi: 10.1007/s00382-019-04797-y URL |
[72] |
Aguirre C, Rojas M, Garreaud R D, et al. Role of synoptic activity on projected changes in upwelling-favourable winds at the ocean’s eastern boundaries[J]. NPJ Climate and Atmospheric Science, 2019, 2(1): 44. DOI: 10.1038/s41612-019-0101-9
doi: 10.1038/s41612-019-0101-9 URL |
[73] |
Oyarzún D, Brierley C M. The future of coastal upwelling in the Humboldt current from model projections[J]. Climate Dynamics, 2019, 52(1-2): 599-615. DOI: 10.1007/s00382-018-4158-7
doi: 10.1007/s00382-018-4158-7 URL |
[74] |
Menary M B, Jackson L C, Lozier M S. Reconciling the relationship between the AMOC and Labrador Sea in OSNAP observations and climate models[J]. Geophysical Research Letters, 2020, 47(18). DOI: 10.1029/2020gl089793
doi: 10.1029/2020gl089793 |
[75] |
Weijer W, Cheng W, Garuba O A, et al. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation[J]. Geophysical Research Letters, 2020, 47(12). DOI: 10.1029/2019gl086075
doi: 10.1029/2019gl086075 |
[76] |
Weijer W, Cheng W, Drijfhout S S, et al. Stability of the Atlantic Meridional Overturning Circulation: a review and synjournal[J]. Journal of Geophysical Research: Oceans, 2019, 2019JC015083. DOI: 10.1029/2019jc015083
doi: 10.1029/2019jc015083 |
[77] |
Golledge N R, Keller E D, Gomez N, et al. Global environmental consequences of twenty-first-century ice-sheet melt[J]. Nature, 2019, 566(7742). DOI: 10.1038/s41586-019-0889-9
doi: 10.1038/s41586-019-0889-9 |
[78] |
Liu W, Xie S P, Liu Z, et al. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate[J]. Science Advances, 2017, 3(1). DOI: 10.1126/sciadv.1601666
doi: 10.1126/sciadv.1601666 |
[79] |
Lohmann J, Ditlevsen P D. Risk of tipping the overturning circulation due to increasing rates of ice melt[J]. Proceedings of The National Academy of Sciences, 2021, 118(9): e2017989118. DOI: 10.1073/pnas.2017989118
doi: 10.1073/pnas.2017989118 URL |
[1] | DING Yong-Jian, ZHANG Shi-Qiang, CHEN Ren-Sheng, QIN Jia, ZHAO Qiu-Dong, LIU Jun-Feng, YANG Yong, HE Xiao-Bo, CHANG Ya-Ping, SHANGGUAN Dong-Hui, HAN Tian-Ding, WU Jin-Kui, LI Xiang-Ying. A review of the impacts of climate change on cryospheric hydrological processes [J]. Climate Change Research, 2025, 21(1): 1-21. |
[2] | QIN Zhuo-Fan, LIAO Hong, DAI Hui-Bin. A review of the impacts of climate change on severe air pollution events [J]. Climate Change Research, 2025, 21(1): 56-68. |
[3] | LYU Xue-Du, CHEN Jia-Qi, GE Hui, ZHU Yi-Dan. Development of climate finance: practices and prospects [J]. Climate Change Research, 2025, 21(1): 78-90. |
[4] | CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services [J]. Climate Change Research, 2024, 20(6): 669-681. |
[5] | GAO Xiang. Climate finance in the context of international law [J]. Climate Change Research, 2024, 20(6): 799-807. |
[6] | ZHU Lei, ZHANG Li-Zhong, JIANG Ying, XU Jian-Feng, HUANG Yan, SUN Shu-Xin. Climate adaptation in industry: a review of research progress [J]. Climate Change Research, 2024, 20(6): 721-735. |
[7] | OU YANG Zhi-Yun, ZHANG Guan-Shi, YING Ling-Xiao. Overview of the impacts of climate change on ecosystem distribution and functions across the Tibetan Plateau [J]. Climate Change Research, 2024, 20(6): 699-710. |
[8] | LU Chun-Hui, YUAN Jia-Shuang, HUANG Lei, ZHANG Yong-Xiang. Key scientific issues in the Global Stocktake from the perspective of IPCC and their implications for China [J]. Climate Change Research, 2024, 20(6): 736-746. |
[9] | ZHOU Ze-Yu, WANG Jun-Hua, CAO Ying. Assessment of global climate change adaptation progress and related recommendations [J]. Climate Change Research, 2024, 20(6): 764-772. |
[10] | NIU Zhen-Guo, JING Yu-Hang, ZHANG Dong-Qi, ZHANG Bo. An overview and the outlook for wetland ecosystems in the Qinghai-Tibetan Plateau under climate change [J]. Climate Change Research, 2024, 20(5): 509-518. |
[11] | WU Pei-Ze, CHEN Sha, LIU Ying-Ying, LI Xiao-Tong, DU Zhan-Xia, CUI Shu-Fen, JIANG Ke-Jun. Low Emissions Analysis Platform (LEAP): applications and challenges in addressing climate change [J]. Climate Change Research, 2024, 20(5): 611-623. |
[12] | Deji-Yuzhen , Lhaba , Basang-Wangdui , Baima-Yucuo , Danzeng-Yiga , Pingcuo-Wangdan , Deji-Yangzong . Changes in lakes in the southwest part of Nagqu, Tibet and their response to climate change in the past 50 years [J]. Climate Change Research, 2024, 20(5): 534-543. |
[13] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
[14] | PAN Xiao-Bin, LIU Shang-Wen. Research on the path of transition finance legal system of China under the background of addressing climate change [J]. Climate Change Research, 2024, 20(4): 465-474. |
[15] | BAO Wen, DUAN An-Min, YOU Qing-Long, HU Die. Research progress on climate change and its impact on water resources over the Tibetan Plateau [J]. Climate Change Research, 2024, 20(2): 158-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|