|
Climate Change Research ›› 2021, Vol. 17 ›› Issue (6): 705-712.doi: 10.12006/j.issn.1673-1719.2021.176
Special Issue: IPCC第六次评估报告WGI解读专栏
• Special Section on the Sixth Assessment Report of IPCC: WGI • Previous Articles Next Articles
Received:
2021-08-18
Revised:
2021-08-30
Online:
2021-11-30
Published:
2021-10-09
ZUO Zhi-Yan, XIAO Dong. Linking global to regional climate change[J]. Climate Change Research, 2021, 17(6): 705-712.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.176
[1] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013: 1217-1308 |
[2] | IPCC. Regional context in climate change 2014: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2014: 1133-1197 |
[3] | Hoegh-Guldberg O, Jacob D, Taylor M, et al. Impacts of 1.5℃ of global warming on natural and human systems, in global warming of 1.5℃[M]. Cambridge: Cambridge University Press, 2018: 175-311 |
[4] | Jia G, Shevliakova E, Artaxo P, et al. Land-climate interactions [M]//Shukla P R, Skea J, Calvo Buendia E. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge: Cambridge University Press, 2019: 131-248 |
[5] |
Thorne P W, Diamond H J, Goodison B, et al. Towards a global land surface climate fiducial reference measurements network[J]. International Journal of Climatology, 2018, 38: 2760-2774
doi: 10.1002/joc.2018.38.issue-6 URL |
[6] |
Chen H, Xu C Y, Guo S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff [J]. Journal of Hydrology, 2012: 434-435, 36-45. DOI: 10.1016/j.jhydrol.2012.02.040
doi: 10.1016/j.jhydrol.2012.02.040 |
[7] |
Bosilovich M G, Chern J D, Mocko D, et al. Evaluating observation influence 21 on regional water budgets in reanalyses[J]. Journal of Climate, 2015, 28(9): 3631-3649. DOI: 10.1175/jcli-d-14-22 00623.1
doi: 10.1175/jcli-d-14-22 00623.1 URL |
[8] |
Tapiador F J, Navarro A, Levizzani V, et al. Global precipitation measurements for validating climate models[J]. Atmospheric Research, 2017, 197: 1-20. DOI: 10.1016/j.atmosres.2017.06.021
doi: 10.1016/j.atmosres.2017.06.021 URL |
[9] |
Venema V K C, Mestre O, Aguilar E, et al. Benchmarking homogenization algorithms for monthly data[J]. Climate of The Past, 2012, 8(1): 89-115. DOI: 10.5194/cp-8-89-2012
doi: 10.5194/cp-8-89-2012 URL |
[10] |
McPherson R A. High-resolution surface observations for climate monitoring[M]//Tarhule A. Climate variability: regional and thematic patterns. UK, 2013, DOI: 10.5772/56044
doi: 10.5772/56044 |
[11] |
von Clarmann T. Smoothing error pitfalls[J]. Atmospheric Measurement Techniques, 2014, 7(9): 3023-3034. DOI: 10.5194/amt-7-3023-2014
doi: 10.5194/amt-7-3023-2014 URL |
[12] |
Lin G, Wan H, Zhang H, et al. Can nudging be used to quantify model sensitivities in precipitation and cloud forcing?[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(3): 1073-1091. DOI: 10.1002/2016ms000659
doi: 10.1002/2016ms000659 URL |
[13] |
Blenkinsop S, Lewis E, Chan S C, et al. Quality-control of an hourly rainfall dataset and climatology of extremes for the UK[J]. International Journal of Climatology, 2017, 37(2): 722-740. DOI: 10.1002/joc.4735
doi: 10.1002/joc.4735 pmid: 28239235 |
[14] |
Frankcombe L M, England M H, Mann M E, et al. Separating internal variability from the externally forced climate response[J]. Journal of Climate, 2015, 28(20): 8184-8202. DOI: 10.1175/jcli-d-15-0069.1
doi: 10.1175/jcli-d-15-0069.1 URL |
[15] |
Yamada T J, Lee M I, Kanamitsu M, et al. Diurnal characteristics of rainfall over the contiguous united states and northern Mexico in the dynamically downscaled reanalysis dataset (US10)[J]. Journal of Hydrometeorology, 2012, 13(3): 1142-1148. DOI: 10.1175/jhm-d-11-0121.1
doi: 10.1175/jhm-d-11-0121.1 URL |
[16] |
Su C H, Eizenberg N, Steinle P, et al. BARRA v1.0: the bureau of meteorology atmospheric high-resolution regional reanalysis for Australia[J]. Geoscientific Model Development, 2019, 12(5): 2049-2068. DOI: 10.5194/gmd-12-2049-2019
doi: 10.5194/gmd-12-2049-2019 URL |
[17] |
Bromwich D H, Wilson A B, Bai L S, et al. A comparison of the regional Arctic system reanalysis and the global ERA-Interim reanalysis for the Arctic[J]. Quarterly Journal of The Royal Meteorological Society, 2016, 142(695): 644-658. DOI: 10.1002/qj.2527
doi: 10.1002/qj.2527 URL |
[18] |
Kaspar K, Niermann D, Borsche1 M, et al. Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy[J]. Advances in Science and Research, 2020, 17: 115-128. DOI: 10.5194/asr-17-115-2020
doi: 10.5194/asr-17-115-2020 URL |
[19] |
Lehner F, Deser C, Maher N, et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6[J]. Earth System Dynamics, 2020, 11(2): 491-508. DOI: 10.5194/esd-11-491-2020
doi: 10.5194/esd-11-491-2020 URL |
[20] |
Maraun D, Shepherd T, Widmann M, et al. Towards process-informed bias correction of climate change simulations[J]. Nature Climate Change, 2017, 7(11): 664-773. DOI: 10.1038/nclimate3418
doi: 10.1038/nclimate3418 URL |
[21] |
Maraun D, Widmann M. Statistical downscaling and bias correction for climate research [M]. Cambridge: Cambridge University Press, 2018: 360. DOI: 10.1017/9781107588783
doi: 10.1017/9781107588783 |
[22] |
Evin G, Favre A C, Hingray B. Stochastic generation of multi-site daily precipitation focusing on extreme events[J]. Hydrology and Earth System Sciences, 2018, 22(1): 655-672. DOI: 10.5194/hess-22-655-2018
doi: 10.5194/hess-22-655-2018 URL |
[23] |
Chandler R E. Multisite, multivariate weather generation based on generalised linear models[J]. Environmental Modelling & Software, 2020, 134: 104867. DOI: 10.1016/j.envsoft.2020.104867
doi: 10.1016/j.envsoft.2020.104867 |
[24] |
Chen X, Zhou T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon[J]. Geophysical Research Letters, 2015, 42(21): 9433-9439. DOI: 10.1002/2015gl066384
doi: 10.1002/2015gl066384 URL |
[25] |
Li D, Xiao Z. Can solar cycle modulate the ENSO effect on the Pacific/North American pattern?[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167: 30-38. DOI: 10.1016/j.jastp.2017.10.007
doi: 10.1016/j.jastp.2017.10.007 URL |
[26] |
Sjolte J, Sturm C, Adolphi F, et al. Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction[J]. Climate of The Past, 2018, 14(8): 1179-1194. DOI: 10.5194/cp-14-1179-2018
doi: 10.5194/cp-14-1179-2018 URL |
[27] |
Solman S A, Orlanski I. Climate change over the extratropical Southern Hemisphere: the tale from an ensemble of reanalysis datasets[J]. Journal of Climate, 2016, 29(5): 1673-1687. DOI: 10.1175/jcli-d-15-0588.1
doi: 10.1175/jcli-d-15-0588.1 URL |
[28] |
Undorf S, Polson D, Bollasina M A, et al. Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 4871-4889. DOI: 10.1029/2017jd027711
doi: 10.1029/2017jd027711 URL |
[29] |
Swingedouw D, Mignot J, Ortega P, et al. Impact of explosive volcanic eruptions on the main climate variability modes[J]. Global and Planetary Change, 2017, 150: 24-45. DOI: 10.1016/j.gloplacha.2017.01.006
doi: 10.1016/j.gloplacha.2017.01.006 URL |
[30] |
Li X, Mitra C, Dong L. Understanding land use change impacts on microclimate using Weather 55 Research and Forecasting (WRF) model[J]. Physics and Chemistry of The Earth, Parts A/B/C, 2018, 103: 115-126, 56. DOI: 10.1016/j.pce.2017.01.017
doi: 10.1016/j.pce.2017.01.017 URL |
[31] |
Tsanis I, Tapoglou E. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change[J]. Theoretical and Applied Climatology, 2019, 135(1): 323-330. DOI: 10.1007/s00704-018-2379-247
doi: 10.1007/s00704-018-2379-247 URL |
[32] |
Bandoro J, Solomon S, Donohoe S, et al. Influences of the Antarctic ozone hole on Southern Hemispheric summer climate change[J]. Journal of Climate, 2014, 27(16): 6245-6264. DOI: 10.1175/jcli-d-13-00698.1
doi: 10.1175/jcli-d-13-00698.1 URL |
[33] |
Smith K L, Polvani L M. Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models[J]. Climate Dynamics, 2017, 48(78): 2653-2670. DOI: 10.1007/s00382-016-3230-4
doi: 10.1007/s00382-016-3230-4 URL |
[34] |
Meehl G A, Hu A, Arblaster J M, et al. Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation[J]. Journal of Climate, 2013, 26(18): 7298-7310. DOI: 10.1175/jcli-d-12-00548.1
doi: 10.1175/jcli-d-12-00548.1 URL |
[35] |
Ghosh R, Müller W A, Baehr J, et al. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating[J]. Climate Dynamics, 2017, 48(11-12): 3547-3563. DOI: 10.1007/s00382-016-3283-4
doi: 10.1007/s00382-016-3283-4 URL |
[36] |
Dong B, Dai A, Vuille M, et al. Asymmetric modulation of ENSO teleconnections by the Interdecadal Pacific Oscillation[J]. Journal of Climate, 2018, 31(18): 7337-7361. DOI: 10.1175/jcli-d-17-0663.1
doi: 10.1175/jcli-d-17-0663.1 URL |
[37] |
Zhai P M, Zhou B Q, Chen Y. A review of climate change attribution studies[J]. Journal of Meteorological Research, 2018, 32(5): 671-692. DOI: 10.1007/s13351-018-8041-6
doi: 10.1007/s13351-018-8041-6 URL |
[38] |
Hoell A, Hoerling M, Eischeid J, et al. Reconciling theories for human and natural attribution of recent East Africa drying[J]. Journal of Climate, 2017, 30(6): 1939-1957. DOI: 10.1175/jcli-d-16-0558.1
doi: 10.1175/jcli-d-16-0558.1 URL |
[39] |
Ji F, Wu Z, Huang J, et al. Evolution of land surface air temperature trend[J]. Nature Climate Change, 2014, 4(6): 462-466. DOI: 10.1038/nclimate2223
doi: 10.1038/nclimate2223 URL |
[40] |
Xu Y, Gao X, Shi Y, et al. Detection and attribution analysis of annual mean temperature changes in China[J]. Climate Research, 2015, 63(1): 61-71. DOI: 10.3354/cr01283
doi: 10.3354/cr01283 URL |
[41] |
Deser C, Terray L, Phillips A S. Forced and internal components of winter air temperature trends over North America during the past 50 years: mechanisms and implications[J]. Journal of Climate, 2016, 29(6): 2237-2258. DOI: 10.1175/jcli-d-15-0304.1
doi: 10.1175/jcli-d-15-0304.1 URL |
[1] | DING Yong-Jian, ZHANG Shi-Qiang, CHEN Ren-Sheng, QIN Jia, ZHAO Qiu-Dong, LIU Jun-Feng, YANG Yong, HE Xiao-Bo, CHANG Ya-Ping, SHANGGUAN Dong-Hui, HAN Tian-Ding, WU Jin-Kui, LI Xiang-Ying. A review of the impacts of climate change on cryospheric hydrological processes [J]. Climate Change Research, 2025, 21(1): 1-21. |
[2] | QIN Zhuo-Fan, LIAO Hong, DAI Hui-Bin. A review of the impacts of climate change on severe air pollution events [J]. Climate Change Research, 2025, 21(1): 56-68. |
[3] | LYU Xue-Du, CHEN Jia-Qi, GE Hui, ZHU Yi-Dan. Development of climate finance: practices and prospects [J]. Climate Change Research, 2025, 21(1): 78-90. |
[4] | CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services [J]. Climate Change Research, 2024, 20(6): 669-681. |
[5] | GAO Xiang. Climate finance in the context of international law [J]. Climate Change Research, 2024, 20(6): 799-807. |
[6] | ZHU Lei, ZHANG Li-Zhong, JIANG Ying, XU Jian-Feng, HUANG Yan, SUN Shu-Xin. Climate adaptation in industry: a review of research progress [J]. Climate Change Research, 2024, 20(6): 721-735. |
[7] | OU YANG Zhi-Yun, ZHANG Guan-Shi, YING Ling-Xiao. Overview of the impacts of climate change on ecosystem distribution and functions across the Tibetan Plateau [J]. Climate Change Research, 2024, 20(6): 699-710. |
[8] | LU Chun-Hui, YUAN Jia-Shuang, HUANG Lei, ZHANG Yong-Xiang. Key scientific issues in the Global Stocktake from the perspective of IPCC and their implications for China [J]. Climate Change Research, 2024, 20(6): 736-746. |
[9] | ZHOU Ze-Yu, WANG Jun-Hua, CAO Ying. Assessment of global climate change adaptation progress and related recommendations [J]. Climate Change Research, 2024, 20(6): 764-772. |
[10] | NIU Zhen-Guo, JING Yu-Hang, ZHANG Dong-Qi, ZHANG Bo. An overview and the outlook for wetland ecosystems in the Qinghai-Tibetan Plateau under climate change [J]. Climate Change Research, 2024, 20(5): 509-518. |
[11] | WU Pei-Ze, CHEN Sha, LIU Ying-Ying, LI Xiao-Tong, DU Zhan-Xia, CUI Shu-Fen, JIANG Ke-Jun. Low Emissions Analysis Platform (LEAP): applications and challenges in addressing climate change [J]. Climate Change Research, 2024, 20(5): 611-623. |
[12] | Deji-Yuzhen , Lhaba , Basang-Wangdui , Baima-Yucuo , Danzeng-Yiga , Pingcuo-Wangdan , Deji-Yangzong . Changes in lakes in the southwest part of Nagqu, Tibet and their response to climate change in the past 50 years [J]. Climate Change Research, 2024, 20(5): 534-543. |
[13] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
[14] | PAN Xiao-Bin, LIU Shang-Wen. Research on the path of transition finance legal system of China under the background of addressing climate change [J]. Climate Change Research, 2024, 20(4): 465-474. |
[15] | BAO Wen, DUAN An-Min, YOU Qing-Long, HU Die. Research progress on climate change and its impact on water resources over the Tibetan Plateau [J]. Climate Change Research, 2024, 20(2): 158-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|