|
Climate Change Research ›› 2020, Vol. 16 ›› Issue (4): 491-504.doi: 10.12006/j.issn.1673-1719.2019.111
• Impacts of Climate Change • Previous Articles Next Articles
LI Rou-Ke1,2(), HAN Zhen-Yu1(
), XU Ying1, SHI Ying1, WU Jia1
Received:
2019-05-16
Revised:
2019-07-18
Online:
2020-07-30
Published:
2020-08-05
Contact:
HAN Zhen-Yu
E-mail:lirk@cma.cn;hanzy@cma.cn
LI Rou-Ke, HAN Zhen-Yu, XU Ying, SHI Ying, WU Jia. An ensemble projection of GDP and population exposure to high temperature events over Jing-Jin-Ji district based on high resolution combined dynamical and statistical downscaling datasets[J]. Climate Change Research, 2020, 16(4): 491-504.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2019.111
Fig. 1 Taylor diagram for ensemble average simulation error of TX, TN and RH in the summer half year by using the station data (a); differences of HD (b) and SD (c) over the entire Jing-Jin-Ji area between the ensemble mean and observation
![]() |
Table 1 The correlation coefficient, mean error and root mean square error of HD and SD over the entire Jing-Jin-Ji area between the simulations and observation
![]() |
Fig. 2 Spatial distribution of the present day (1986-2005) and spatial distribution of the future change of hazard factor over the Jing-Jin-Ji district compared with the present day
Fig. 3 Future change of hazard factor over the Jing-Jin-Ji district compared with the present day (a, b), and regional average value of GDP and population (c) (In (c), blue star indicates the time point when the regional average value exceeds 1 time of average value of the reference period in the process of GDP rising, and red star indicates the time point when the regional average value is lower than the value of reference period in the process of population falling)
Fig. 4 Spatial distribution of GDP and population in the present day and the change of future periods in the 21st century over the Jing-Jin-Ji district
Fig. 5 Spatial distribution of GDP and population exposure in the present day and the change of future periods in the 21st century over the Jing-Jin-Ji district
![]() |
Table 2 Regional mean changes of GDP/population exposures ratio compared with the present day (1986—2005) over some cities of Jing-Jin-Ji district, respectively
![]() |
[1] | Blumberg G, Dphil S M. Assessing the potential impact of heat waves in cities: implications for hazard preparation and planning[J]. Procedia Economics and Finance, 2014,18:727-735. DOI: 10.1016/S2212-5671(14) 00996-4 |
[2] | Zhao Y, Sultan B, Vautard R, et al. Potential escalation of heat-related working costs with climate and socioeconomic changes in China[J]. PNAS, 2016,113(17):4640-4645. DOI: 10.1073/pnas.1521828113 |
[3] | 郭建平, 高素华. 高温、高CO2对农作物影响的试验研究[J]. 中国生态农业学报, 2002,10(1):17-20. |
Guo J P, Gao S H. The experimental study on impacts of high temperature and high CO2 concentration on crops[J]. Chinese Journal of Eco-Agriculture, 2002,10(1):17-20 (in Chinese) | |
[4] | 李琪, 任景全, 王连喜. 未来气候变化情景下江苏水稻高温热害模拟研究I: 评估孕穗—抽穗期高温热害对水稻产量的影响[J]. 中国农业气象, 2014,35(1):91-96. |
Li Q, Ren J Q, Wang L X. Simulation of the heat injury on rice production in Jiangsu province under the climate change scenarios I: impact assessment of the heat injury on rice yield from booting to heading stage[J]. Chinese Journal of Agrometeorology, 2014,35(1):91-96 (in Chinese) | |
[5] | Kalkstein S, Scott J G. An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change[J]. Environmental Health Perspectives, 1997,105(1):84-93. DOI: 10.1289/ehp.9710584 |
[6] | Chen K, Bi J, Chen J, , et al. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China[J]. Science of the Total Environment, 2015,506/507:18-25. DOI: 10.1016/j.scitotenv.2014.10.092 |
[7] | 刘珂, 许吟隆, 陶生才, 等. 多模式集合对中国气温的模拟效果及未来30年中国气温变化预估[J]. 高原气象, 2011,30(2):363-370. |
Liu K, Xu Y L, Tao S C, et al. Validation of multi-model ensemble to air temperature of china and projection of air temperature change in China for the next three decades[J]. Plateau Meteorology, 2011,30(2):363-370 (in Chinese) | |
[8] | 姚遥, 罗勇, 黄建斌. 8个CMIP5模式对中国极端气温的模拟和预估[J]. 气候变化研究进展, 2012 (4):250-256. |
Yao Y, Luo Y, Huang J B. Evaluation and projection of temperature extremes over china based on 8 modeling data from CMIP5[J]. Climate Change Research, 2012 (4):250-256 (in Chinese) | |
[9] | 吴绍洪. 综合风险防范[M]. 北京: 科学出版社, 2011. |
Wu S H. Integrated risk governance [M]. Beijing: Science Press, 2011 (in Chinese) | |
[10] | 董思言, 徐影, 周波涛, 等. 基于CMIP5模式的中国地区未来高温灾害风险预估[J]. 气候变化研究进展, 2014,10(5):365-369. |
Dong S Y, Xu Y, Zhou B T, et al. Projected risk of extreme heat in China based on CMIP5 models[J]. Climate Change Research, 2014,10(5):365-369 (in Chinese) | |
[11] | 黄大鹏, 张蕾, 高歌. 未来情景下中国高温的人口暴露度变化及影响因素研究[J]. 地理学报, 2016,71(7):1189-1200. DOI: 10.11821/dlxb201607008. |
Huang D P, Zhang L, Gao G. Changes in population exposure to high temperature under a future scenario in China and its influencing factors[J]. Acta Geographica Sinica, 2016,71(7):1189-1200. DOI: 10.11821/dlxb201607008 (in Chinese) | |
[12] | 张蕾, 黄大鹏, 杨冰韵. RCP4.5情景下中国人口对高温暴露度预估研究[J]. 地理研究, 2016,35(12):2238-2248. |
Zhang L, Huang D P, Yang B Y. Future population exposure to high temperature in China under RCP4.5 scenario[J]. Geographical Research, 2016,35(12):2238-2248 (in Chinese) | |
[13] | Gao X J, Shi Y, Song R V, et al. Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM[J]. Meteorology and Atmospheric Physics, 2008,100(1-4):73-86. DOI: 10.1007/s00703-008-0296-5 |
[14] | Gao X J, Shi Y, Zhang D F, et al. Uncertainties in monsoon precipitation projections over China: results from two high resolution RCM simulations[J]. Climate Research, 2012,52:213-226. DOI: 10.3354/cr01084 |
[15] | 吴婕, 高学杰, 徐影. RegCM4模式对雄安及周边区域气候变化的集合预估[J]. 大气科学, 2018,42(3):696-705. |
Wu J, Gao X J, Xu Y. Climate change projection over Xiong'an district and its adjacent areas: an ensemble of RegCM4 simulations[J]. Chinese Journal of Atmospheric Sciences, 2018,42(3):696-705 (in Chinese) | |
[16] | 高学杰, 石英, 张冬峰, 等. RegCM3对21世纪中国区域气候变化的高分辨率模拟[J]. 科学通报, 2012,57(5):374-381. |
Gao X J, Shi Y, Zhang D F, et al. High resolution simulation of regional climate change in China in the 21st century by RegCM3[J]. Chinese Science Bulletin, 2012,57(5):374-381 (in Chinese) | |
[17] | 郎咸梅, 隋月. 全球变暖2℃情景下中国平均气候和极端气候事件变化预估[J]. 科学通报, 2013,58(8):734-742. |
Lang X M, Sui Y. Prediction of changes of average climate and extreme climate events in China under the scenario of global warming at 2℃[J]. Chinese Science Bulletin, 2013,58(8):734-742 (in Chinese) | |
[18] | 李东欢, 邹立维, 周天军. 全球1.5℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017 (4):446-457. |
Li D H, Zou L W, Zhou T J. Changes of extreme indices over China in response to 1.5℃global warming projected by a regional climate model[J]. Advances in Earth Science, 2017 (4):446-457 (in Chinese) | |
[19] | 石英, 韩振宇, 徐影, 等. 6.25 km高分辨率降尺度数据对雄安新区及整个京津冀地区未来极端气候事件的预估[J]. 气候变化研究进展, 2019,15(2):140-149. |
Shi Y, Han Z Y, Xu Y, et al. Future changes of climate extremes in Xiong'an New Area and Jing-Jin-Ji district based on high resolution (6.25 km) combined statistical and dynamical downscaling datasets[J]. Climate Change Research, 2019,15(2):140-149 (in Chinese) | |
[20] | van Vuuren D P, Edmonds J, Kainuma M, et al. The representative concentration pathways: an overview[J]. Climatic Change, 2011,109:5-31. DOI: 10.1007/s10584-011-0148-z |
[21] | Kriegler E, O'Neill B C, Hallegatte S, et al. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways[J]. Global Environmental Change, 2012,22(4):807-822. DOI: 10.1016/j.gloenvcha.2012.05.005 |
[22] |
O'Neill B C, Kriegler E, Riahi K, et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways[J]. Climatic Change, 2014,122(3):387-400. DOI: 10.1007/s10584-013-0905-2
doi: 10.1007/s10584-013-0905-2 URL |
[23] | Han Z Y, Shi Y, Wu J, et al. Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijing-Tianjin-Hebei region of China[J]. Journal of Applied Meteorology and Climatology, 2019,58(11):2387-2403. DOI: 10.1175/JAMC-D-19-0050.1 |
[24] | Jones B, O'Neill B C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways[J]. Environmental Research Letters, 2016,11(8):084003. DOI: 10.1088/1748-9326/11/8/084003 |
[25] | Geiger T, Murakami D, Frieler K, et al. Spatially-explicit Gross Cell Product (GCP) time series: past observations (1850-2000) harmonized with future projections according the Shared Socioeconomic Pathways (2010-2100) [DB/OL]. GFZ Data Services. 2017 [2019-05-16]. http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2740907 |
[26] | Murakami D, Yamagata Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling[J]. Sustainability, 2019,11(7):2106. DOI: 10.3390/su11072106 |
[27] | 张可慧, 李正涛, 刘剑锋, 等. 河北地区高温热浪时空特征及其对工业、交通的影响研究[J]. 地理与地理信息科学, 2011,27(6):90-95. |
Zhang K H, Li Z T, Liu J F, et al. Temporal-spatial feature analysis on the high-temperature and heatwaves in Hebei and its influence on industry and transportation[J]. Geography and Geo-Information Science, 2011,27(6):90-95 (in Chinese) | |
[28] | Wu J, Gao X J, Giorgi F, et al. Changes of effective temperature and cold/hot days in late decades over China based on a high-resolution gridded observation dataset[J]. International Journal of Climatology, 2017,37(1):788-800. DOI: 10.1002/joc.5038 |
[29] |
Cheng X S, Su H. Effects of climatic temperature stress on cardiovascular diseases[J]. European Journal of Internal Medicine, 2010,21(3):164-167. DOI: 10.1016/j.ejim.2010.03.001
URL pmid: 20493415 |
[30] | 邢娟娟. 井下高温作业的矿工生理、生化测定研究[J]. 中国安全科学学报, 2001,11(4):45-47. |
Xing J J. Study on physiological and biological changes for miners exposed to heat in underground Pit[J]. China Safety Science Journal, 2001,11(4):45-47 (in Chinese) | |
[31] | Robinson P J. On the definition of a heat wave[J]. Journal of Applied Meteorology, 2001,40(4):762-775. DOI: 10.1175/1520-0450(2001)040< 0762:OTDOAH>2.0.CO;2 |
[32] | Ding T, Qian W H. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960-2008[J]. Advances in Atmospheric Sciences, 2011,28(2):322-337. DOI: 10.1007/s00376-010-9236-7 |
[33] | IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change [M]. Cambridge: Cambridge University Press, 2012: 582 |
[34] | Jones B, O'Neill B C, McDaniel L, et al. Future population exposure to US heat extremes[J]. Nature Climate Change, 2015,5(7):652-655. DOI: 10.1038/nclimate2631 |
[35] | Jones B, Tebaldi C, Brian C, et al. Avoiding population exposure to heat-related extremes: demographic change vs climate change[J]. Climatic Change, 2018,146(3-4):1-15. DOI: 10.1007/s10584-017-2133-7 |
[36] | Harrington L J, Otto F E L. Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 ℃ and 2℃of warming[J]. Environmental Research Letters, 2018,13(3):034011. DOI: 10.1088/1748-9326/aaaa99 |
[37] | Park T-W, Deng Y, Cai M. Feedback attribution of the El Niño-Southern Oscillation: related atmospheric and surface temperature anomalies[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D23), D23101. DOI: 10.1029/2012JD018468 |
[1] | DING Yong-Jian, ZHANG Shi-Qiang, CHEN Ren-Sheng, QIN Jia, ZHAO Qiu-Dong, LIU Jun-Feng, YANG Yong, HE Xiao-Bo, CHANG Ya-Ping, SHANGGUAN Dong-Hui, HAN Tian-Ding, WU Jin-Kui, LI Xiang-Ying. A review of the impacts of climate change on cryospheric hydrological processes [J]. Climate Change Research, 2025, 21(1): 1-21. |
[2] | QIN Zhuo-Fan, LIAO Hong, DAI Hui-Bin. A review of the impacts of climate change on severe air pollution events [J]. Climate Change Research, 2025, 21(1): 56-68. |
[3] | LYU Xue-Du, CHEN Jia-Qi, GE Hui, ZHU Yi-Dan. Development of climate finance: practices and prospects [J]. Climate Change Research, 2025, 21(1): 78-90. |
[4] | CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services [J]. Climate Change Research, 2024, 20(6): 669-681. |
[5] | GAO Xiang. Climate finance in the context of international law [J]. Climate Change Research, 2024, 20(6): 799-807. |
[6] | ZHU Lei, ZHANG Li-Zhong, JIANG Ying, XU Jian-Feng, HUANG Yan, SUN Shu-Xin. Climate adaptation in industry: a review of research progress [J]. Climate Change Research, 2024, 20(6): 721-735. |
[7] | OU YANG Zhi-Yun, ZHANG Guan-Shi, YING Ling-Xiao. Overview of the impacts of climate change on ecosystem distribution and functions across the Tibetan Plateau [J]. Climate Change Research, 2024, 20(6): 699-710. |
[8] | LU Chun-Hui, YUAN Jia-Shuang, HUANG Lei, ZHANG Yong-Xiang. Key scientific issues in the Global Stocktake from the perspective of IPCC and their implications for China [J]. Climate Change Research, 2024, 20(6): 736-746. |
[9] | ZHOU Ze-Yu, WANG Jun-Hua, CAO Ying. Assessment of global climate change adaptation progress and related recommendations [J]. Climate Change Research, 2024, 20(6): 764-772. |
[10] | NIU Zhen-Guo, JING Yu-Hang, ZHANG Dong-Qi, ZHANG Bo. An overview and the outlook for wetland ecosystems in the Qinghai-Tibetan Plateau under climate change [J]. Climate Change Research, 2024, 20(5): 509-518. |
[11] | WU Pei-Ze, CHEN Sha, LIU Ying-Ying, LI Xiao-Tong, DU Zhan-Xia, CUI Shu-Fen, JIANG Ke-Jun. Low Emissions Analysis Platform (LEAP): applications and challenges in addressing climate change [J]. Climate Change Research, 2024, 20(5): 611-623. |
[12] | Deji-Yuzhen , Lhaba , Basang-Wangdui , Baima-Yucuo , Danzeng-Yiga , Pingcuo-Wangdan , Deji-Yangzong . Changes in lakes in the southwest part of Nagqu, Tibet and their response to climate change in the past 50 years [J]. Climate Change Research, 2024, 20(5): 534-543. |
[13] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
[14] | PAN Xiao-Bin, LIU Shang-Wen. Research on the path of transition finance legal system of China under the background of addressing climate change [J]. Climate Change Research, 2024, 20(4): 465-474. |
[15] | CHENG Yang, HAN Zhen-Yu. Projection of the cluster high temperature events in China and population exposure under 1.5℃ and 2℃ global warming [J]. Climate Change Research, 2024, 20(3): 278-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|