气候变化研究进展 ›› 2024, Vol. 20 ›› Issue (5): 593-610.doi: 10.12006/j.issn.1673-1719.2024.044
收稿日期:
2024-03-11
修回日期:
2024-05-10
出版日期:
2024-09-30
发布日期:
2024-08-16
通讯作者:
柴麒敏,男,研究员,作者简介:
解瑞丽,女,高级工程师,基金资助:
XIE Rui-Li1(), CHAI Qi-Min1,2(
)
Received:
2024-03-11
Revised:
2024-05-10
Online:
2024-09-30
Published:
2024-08-16
摘要:
作为影响仅次于二氧化碳的短寿命温室气体,甲烷减排逐步从科学共识上升为政策共识,成为全球气候谈判焦点议题和国际合作的重点领域。文中比较分析了全球及我国甲烷排放趋势、特征及已有减排行动,并在“中国应对气候变化战略规划评估模型”的基础上自主构建了甲烷排放预测模块(SPAMC-Methane),并设置了基准情景、能源转型情景、甲烷低排放情景共三类情景,分析了到2060年的中国甲烷排放趋势、减排潜力和路径。结果表明,此前相关研究对我国甲烷排放达峰时间预测偏早,峰值预测相对偏低。基于最新可得的数据,在能源转型情景下,甲烷排放预计2032年达峰,峰值约为7580万t;在甲烷低排放情景下,通过有效行动力度提升,甲烷排放有望在2025年前达峰,峰值约为7060万t,到2035年和2060年中国甲烷排放较峰值分别减少约12.3%和53.7%,与基准情景相比,能源转型和技术强化减排措施贡献分别约为62.9%和37.1%,从减排领域看,煤炭开采、固体废物处理部门减排合计贡献约77%。
解瑞丽, 柴麒敏. 基于SPAMC-Methane模型的中国甲烷减排路径研究[J]. 气候变化研究进展, 2024, 20(5): 593-610.
XIE Rui-Li, CHAI Qi-Min. Research on China’s methane emission reduction path based on SPAMC-Methane model[J]. Climate Change Research, 2024, 20(5): 593-610.
图1 全球及主要国家甲烷排放量变化趋势 注:中国及主要国家排放量对应左侧坐标轴,全球排放量对应右侧坐标轴;NCCC指中国历次气候变化国家信息通报,EDGAR v8.0来源于全球大气研究排放数据库,全球及其他国家数据均来源于EDGAR v8.0。
Fig. 1 Methane emission trends of the world and major countries
图3 全球及主要国家甲烷排放结构 注:EDGAR v8.0不含土地利用变化和林业领域甲烷排放(包括湿地、淹没土地甲烷排放等)。图中除了1)和2),其他皆来源于EDGAR v8.0数据库中2022年的排放数据;1)来源于美国EPA数据库中美国2021年的排放数据;2)来源于中国NCCC数据库中中国2018年的排放数据。
Fig. 3 Methane emission structure of the world and major countries
图8 不同情景下的中国甲烷排放趋势[10?-12] 注:WRI指世界资源研究所;THU指清华大学;LBNL指劳伦斯伯克利国家实验室;NCSC指国家气候战略中心,即本研究数据。
Fig. 8 Trends of methane emissions in China under different scenarios [10?-12]
[1] | UNFCCC. Draft decision -/CMA.5. Outcome of the first global stocktake[EB/OL]. 2023 [2024-03-07]. https://unfccc.int/sites/default/files/resource/cma2023L17adv.pdf |
[2] | 徐华清, 马翠梅. 推动我国甲烷排放控制迈上新台阶[J]. 中国环境监察, 2023 (11): 27-28. |
Xu H Q, Ma C M. Promote China’s methane emission control to a new stage[J]. China Environment Supervision, 2023 (11): 27-28 (in Chinese) | |
[3] | Janardanan R, Maksyutov S, Tsuruta A, et al. Country-scale analysis of methane emissions with a high-resolution inverse model using GOSAT and surface observations[J]. Remote Sensing, 2020, 12 (3): 375 |
[4] | Zhu S H, Feng L, Liu Y, et al. Decadal methane emission trend inferred from proxy GOSAT XCH4 retrievals: impacts of transport model spatial resolution[J]. Advances in Atmospheric Sciences, 2022, 39: 1343-1359 |
[5] | Harmsen M, van Vuuren D P, Bodirsky B L, et al. The role of methane in future climate strategies: mitigation potentials and climate impacts[J]. Climatic Change, 2020, 163 (3): 1409-1425 |
[6] | McKinsey & Company. Curbing methane emissions: how five industries can counter a major climate threat[R/OL]. 2021 [2022-10-21]. https://www.mckinsey.com/capabilities/sustainability/our-insights/curbing-methane-emissions-how-five-industries-can-counter-a-major-climate-threat |
[7] | US EPA. Global non-CO2 greenhouse gas emission projections & mitigation potential: 2015-2050[R/OL]. 2019 [2022-10-21]. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-non-co2-greenhouse-gas-emission-projections |
[8] | CCAC, UNEP. Global methane assessment: benefits and costs of mitigating methane emissions[R/OL]. 2021 [2022-10-21]. https://www.ccacoalition.org/en/resources/global-methane-assessment-full-report |
[9] | IEA. Curtailing methane emissions from fossil fuel operations: pathways to a 75% cut by 2030[R/OL]. 2021 [2022-10-21]. https://iea.blob.core.windows.net/assets/ba5d143a-f3ab-47e6-b528-049f81eb31ae/CurtailingMethaneEmissionsfromFossilFuelOperations.pdf |
[10] | 宋然平. 中国减缓气候变化的机遇: 非二氧化碳类温室气体[R/OL]. 2019 [2022-10-21]. https://files.wri.org/d8/s3fs-public/opportunities-advance-mitigation-ambition-china-chinese_0.pdf. |
Song R P. Opportunities to advance mitigation ambition in China: non-CO2 greenhouse gas emissions[R/OL]. 2019 [2022-10-21]. https://files.wri.org/d8/s3fs-public/opportunities-advance-mitigation-ambition-china-chinese_0.pdf (in Chinese) | |
[11] | He J K, Li Z, Zhang X L, et al. Comprehensive report on China’s long-term low-carbon development strategies and pathways[J]. Chinese Journal of Population, Resources and Environment, 2020 (18): 263-295 |
[12] | Lin J, Khanna N, Liu X, et al. China’s Non-CO2 greenhouse gas emissions: future trajectories and mitigation options and potential[J]. Scientific Reports, 2019 (9): 16095. DOI: 10.1038/s41598-019-52653-0 |
[13] | Lin J, Khanna N, Liu X, et al. Opportunities to tackle short-lived climate pollutants and other greenhouse gases for China[J]. Science of the Total Environment, 2022 (842): 156842. DOI: 10.1016/j.scitotenv.2022.156842 |
[14] | 贺晨旻, 迟远英, 向翩翩, 等. 我国甲烷排放情景分析: IPAC模型结果[J]. 大气科学学报, 2022, 45 (3): 414-427. DOI: 10.13878/j.cnki.dqkxxb.20220524008. |
He C M, Chi Y Y, Xiang P P, et al. CH4emission scenario analysis for China: IPAC results[J]. Transactions of Atmospheric Sciences, 2022, 45 (3): 414-427. DOI: 10.13878/j.cnki.dqkxxb.20220524008 (in Chinese) | |
[15] | 楚若男. 陕西省CH4、N2O排放清单及减排潜力分析[D]. 西安: 西安建筑科技大学, 2021. DOI: 10.27393/d.cnki.gxazu.2021.000728. |
Chu R N. Calculation of CH4 and N2O emissions and analysis of emission reduction potential in Shanxi province[D]. Xi’an: Xi’an University of Architecture and Technology, 2021. DOI: 10.27393/d.cnki.gxazu.2021.000728 (in Chinese) | |
[16] | 刘文革, 徐鑫, 韩甲业, 等. 碳中和目标下煤矿甲烷减排趋势模型及关键技术[J]. 煤炭学报, 2022, 47 (1): 470-479. |
Liu W G, Xu X, Han J Y, et al. Trend model and key technology of coal mine methane emission reduction aiming for the carbon neutrality[J]. Journal of China Coal Society, 2022, 47 (1): 470-479 (in Chinese) | |
[17] | 蔡松锋, 黄德林. 我国农业源温室气体技术减排的影响评价: 基于一般均衡模型的视角[J]. 北京农业职业学院学报, 2011, 25 (2): 24-29. |
Cai S F, Huang D L. Assessment of the impact of agricultural greenhouse gas emission reduction technologies in China: a perspective based on the general equilibrium model[J]. Journal of Beijing Agricultural Vocation College, 2011, 25 (2): 24-29 (in Chinese) | |
[18] | 瞿思佳. 基于GIS-SD中国垃圾填埋场甲烷排放趋势及减排措施研究[D]. 重庆: 重庆交通大学, 2018. |
Qu S J. A study on trends and reduction measures of methane emission in China’s landfills based on GIS-SD model[D]. Chongqing: Chongqing Jiaotong University, 2018 (in Chinese) | |
[19] | 国家发展和改革委员会. 中华人民共和国气候变化初始国家信息通报[R/OL]. 2004 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524224387926.pdf. |
National Development and Reform Commission. The People’s Republic of China initial national communication on climate change[R/OL]. 2004 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524224387926.pdf (in Chinese) | |
[20] | 国家发展和改革委员会. 中华人民共和国气候变化第二次国家信息通报[R/OL]. 2013 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524738708928.pdf. |
National Development and Reform Commission. The People’s Republic of China second national communication on climate change[R/OL]. 2013 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201904/P020190419524738708928.pdf (in Chinese) | |
[21] | 生态环境部. 中华人民共和国气候变化第三次国家信息通报[R/OL]. 2018 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701762678052438.pdf. |
Ministry of Ecological Environment. The People’s Republic of China third national communication on climate change[R/OL]. 2018 [2022-10-21]. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701762678052438.pdf (in Chinese) | |
[22] | 生态环境部. 中华人民共和国气候变化第二次两年更新报告[R/OL]. 2018 [2022-10-21]. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf |
Ministry of Ecological Environment. The People’s Republic of China second biennial update report on climate change[R/OL]. 2018 [2022-10-21]. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf (in Chinese) | |
[23] | 生态环境部. 中华人民共和国气候变化第四次国家信息通报[R/OL]. 2023 [2024-01-25]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717234502302.pdf. |
Ministry of Ecological Environment. The People’s Republic of China fourth national communication on climate change[R/OL]. 2023 [2024-01-25]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717234502302.pdf (in Chinese) | |
[24] | 生态环境部. 中华人民共和国气候变化第三次两年更新报告[R/OL]. 2023 [2024-01-25]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717236049262.pdf. |
Ministry of Ecological Environment. The People’s Republic of China third biennial update report on climate change[R/OL]. 2023 [2024-01-25]. https://www.mee.gov.cn/ywdt/hjywnews/202312/W020231229717236049262.pdf. (in Chinese) | |
[25] | European Commission. Emissions Database for Global Atmospheric Research (EDGAR v8.0): global greenhouse gas emissions[EB/OL]. 2023 [2024-01-25]. https://edgar.jrc.ec.europa.eu/dataset_ghg80 |
[26] | US EPA. Inventory of U.S.greenhouse gas emissions and sinks: 1990-2021[R/OL]. 2023 [2024-01-25]. https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf |
[27] | World Bank. World Bank national accounts data[EB/OL]. 2022 [2022-10-14]. https://data.worldbank.org/indicator/NY.GNP.PCAP.CD |
[28] | European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions: on an EU strategy to reduce methane emissions[EB/OL]. 2020 [2022-10-21]. https://energy.ec.europa.eu/system/files/2020-10/eu_methane_strategy_0.pdf |
[29] | The European Parliament and the Council. Regulation (EU) 2024/1787 of the European Parliament and of the Council of 13 June 2024 on the reduction of methane emissions in the energy sector and amending Regulation (EU) 2019/942.[EB/OL]. [2024-09-11]. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401787 |
[30] | The White House Office of Domestic Climate Policy. U.S. Methane emissions reduction action plan[EB/OL]. 2021 [2022-10-21]. https://www.whitehouse.gov/wp-content/uploads/2021/11/US-Methane-Emissions-Reduction-Action-Plan-1.pdf |
[31] | US Congress. Public law No: 117-169 H.R.5376 inflation reduction act of 2022[EB/OL]. 2022 [2022-10-21]. https://www.congress.gov/117/plaws/publ169/PLAW-117publ169.pdf |
[32] | The White House. Delivering on the U.S. methane emissions reduction action plan[EB/OL]. 2022 [2024-03-07]. https://whitehouse.gov/wp-content/uploads/2022/11/US-Methane-Emissions-Reduction-Action-Plan-Update.pdf |
[33] | US EPA. Standards of performance for new, reconstructed, and modified sources and emissions guidelines for existing sources: oil and natural gas sector climate review[EB/OL]. 2023 [2024-03-07]. https://www.epa.gov/system/files/documents/2023-12/eo12866_oil-and-gas-nsps-eg-climate-review-2060-av16-final-rule-20231130.pdf |
[34] | Environment and Climate Change Canada. Faster and further: Canada’s methane strategy[EB/OL]. 2022 [2024-03-07]. https://publications.gc.ca/collections/collection_2022/eccc/En4-491-2022-eng.pdf |
[35] | Government of Canada. Regulations respecting reduction in the release of methane and certain volatile organic compounds (upstream oil and gas sector) (SOR/2018-66) [EB/OL]. 2023[2024-03-07]. https://laws-lois.justice.gc.ca/PDF/SOR-2018-66.pdf |
[36] | 杨霖, 杨儒浦, 刘金淼, 等. 甲烷控排的国际进展与经验借鉴[J]. 环境经济, 2023 (24): 38-45. |
Yang L, Yang R P, Liu J M, et al. International progress and experience reference in methane emission control[J]. Environmental Economy, 2023 (24): 38-45 (in Chinese) | |
[37] | 惠婧璇, 朱松丽. 全球甲烷控排政策措施评述及其对中国的启示和建议[J]. 气候变化研究进展, 2023, 19 (6): 683-692. |
Hui J X, Zhu S L. Overview on global policies and measures to control methane emissions and its implications for China[J]. Climate Change Research, 2023, 19 (6): 683-692 (in Chinese) | |
[38] | 柴麒敏. 美丽中国愿景下我国碳达峰、碳中和战略的实施路径研究[J]. 环境保护, 2022, 50 (6): 21-25. |
Chai Q M. Study on the transition pathways towards carbon emission peak and neutrality in Beautiful China perspective[J]. Environmental Protection, 2022, 50 (6): 21-25 (in Chinese) | |
[39] | 陈卫. 中国人口负增长与老龄化趋势预测[J]. 社会科学辑刊, 2022 (5): 133-144. |
Chen W. Forecasting negative population growth and population ageing in China[J]. Social Science Journal, 2022 (5): 133-144 (in Chinese) | |
[40] | 胡鞍钢, 刘生龙. 中国实现现代化经济社会结构的展望[J]. 山东大学学报 (哲学社会科学版), 2018 (2): 1-8. |
Hu A G, Liu S L. An outlook on the economic and social structure of modernization in China[J]. Journal of Shandong University (Philosophy and Social Sciences), 2018 (2): 1-8 (in Chinese) | |
[41] | 胡安俊. 2035年中国的城镇化率与城市群主体空间形态[J]. 技术经济, 2023, 42 (5): 174-188. |
Hu A J. Prediction of urbanization rate and main spatial form of urban agglomerations in China in 2035[J]. Journal of Technology Economics, 2023, 42 (5): 174-188 (in Chinese) | |
[42] | 秦越. 中国居民肉类消费特征与趋势研究[D]. 北京: 中国农业科学院, 2022. DOI: 10.27630/d.cnki.gznky.2022.000424. |
Qin Y. Study on the characteristics and trend of Chinese residents’ meat consumption[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022 (in Chinese) | |
[43] | 许行行. 不同煤级储层煤层气成分与含量对比研究[D]. 徐州: 中国矿业大学, 2024. DOI: 10.27623/d.cnki.gzkyu.2023.000419. |
Xu H H. Comparative study on composition and content of coalbed methane in different coal rank reservoirs[D]. Xuzhou: China University of Mining and Technology, 2024. DOI: 10.27623/d.cnki.gzkyu.2023.000419 (in Chinese) | |
[44] | Kern J S, Zitong G, Ganlin Z, et al. Spatial analysis of methane emissions from paddy soils in China and the potential for emissions reduction[J]. Nutrient Cycling in Agroecosystems, 1997, 49: 181-195 |
[45] | Minamikawa K, Fumoto T, Itoh M, et al. Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model[J]. Biology and Fertility of Soils, 2014, 50: 879-889 |
[46] | Lu W, Chen W, Duan B, et al. Methane emissions and mitigation options in irrigated rice fields in Southeast China[J]. Nutrient Cycling in Agroecosystems, 2000, 58: 65-73 |
[47] | Nicholas C, Arti B, Julia D, et al. Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield[J]. Agriculture, Ecosystems & Environment, 2021: 318. DOI: 10.1016/j.agee.2021.107571 |
[48] | Wang H H, Shen M X, Hui D F, et al. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.) -wheat (Triticum aestivum L.) cropping system[J]. Soil and Tillage Research, 2019, 195. DOI: 10.1016/j.still.2019.104377 |
[49] | Li R C, Tian Y G, Wang F, et al. Optimizing the rate of straw returning to balance trade-offs between carbon emission budget and rice yield in China[J]. Sustainable Production and Consumption, 2024, 47: 166-177 |
[50] |
Ngámbi J W, Selapa M J, Brown D, et al. The effect of varying levels of purified condensed tannins on performance, blood profile, meat quality and methane emission in male Bapedi sheep fed grass hay and pellet-based diet[J]. Tropical Animal Health and Production, 2022, 54: 263. DOI: 10.1007/s11250-022-03268-7
pmid: 35960378 |
[51] |
安济山, 万发春, 沈维军, 等. 多维度调控反刍动物甲烷减排的研究进展[J]. 动物营养学报, 2022, 34 (11): 6842-6850.
doi: 10.3969/j.issn.1006-267x.2022.11.004 |
An J S, Wan F C, Shen W J, et al. Research progress on multi-dimensional regulation measures of reducing methane emission in ruminants[J]. Chinese Journal of Animal Nutrition, 2022, 34 (11): 6842-6850 (in Chinese)
doi: 10.3969/j.issn.1006-267x.2022.11.004 |
|
[52] | 汪诗平, Wilkes A, 汪亚运, 等. 放牧阉牦牛提前出栏甲烷排放强度减排潜力探讨[J]. 环境科学, 2014, 35 (8): 3225-3229. |
Wang S P, Wilkes A, Wang Y Y, et al. Discussion on reduction potential of CH4 emission intensity for early off-take practice of grazing yak[J]. Environmental Science, 2014, 35 (8): 3225-3229 (in Chinese) | |
[53] | Zhang N, Qian H Y, Li H X, et al. Effect of warming on rice yield and methane emissions in a Chinese tropical double-rice cropping system[J]. Agriculture, Ecosystems & Environment, 2023: 348. DOI: 10.1016/j.agee.2023.108409 |
[54] |
杨璐, 李夏菲, 于书霞, 等. 湖北省猪粪管理温室气体减排潜力分析[J]. 资源科学, 2016, 38 (3): 557-564.
doi: 10.18402/resci.2016.03.18 |
Yang L, Li X F, Yu S X, et al. The mitigation potential of greenhouse gas emissions from pig manure management in Hubei[J]. Resources Science, 2016, 38 (3): 557-564 (in Chinese)
doi: 10.18402/resci.2016.03.18 |
|
[55] | 陈瑞蕊, 王一明, 胡君利, 等. 畜禽粪便管理系统中甲烷的产排特征及减排对策[J]. 土壤学报, 2012, 49 (4): 815-823. |
Chen R R, Wang Y M, Hu J L, et al. Methane emission and mitigation strategies in animal manure management system[J]. Acta Pedologica Sinica, 2012, 49 (4): 815-823 (in Chinese) | |
[56] | 王琛, 孙治国, 付友先, 等. 填埋场产甲烷影响因素及减排技术研究进展[J]. 山东化工, 2022, 51 (16): 104-106, 110. |
Wang C, Sun Z G, Fu Y X, et al. Research progress on influencing factors and reduction technologies of methane emissions from landfills[J]. Shandong Chemical Industry, 2022, 51 (16): 104-106, 110 (in Chinese) | |
[57] |
李颖, 武学, 孙成双, 等. 基于低碳发展的北京城市生活垃圾处理模式优化[J]. 资源科学, 2021, 43 (8): 1574-1588.
doi: 10.18402/resci.2021.08.06 |
Li Y, Wu X, Sun C S, et al. Optimization of Beijing municipal solid waste treatment model based on low-carbon development[J]. Resources Science, 2021, 43 (8): 1574-1588 (in Chinese)
doi: 10.18402/resci.2021.08.06 |
|
[58] | 马翠梅, 高敏惠, 褚振华. 中国煤矿甲烷排放标准执行情况及政策建议[J]. 世界环境, 2021 (5): 47-49. |
Ma C M, Gao M H, Chu Z H. Implementation of China’s emission standard of coalbed methane/coal mine gas and related policy recommendations[J]. World Environment, 2021 (5): 47-49 (in Chinese) | |
[59] | Daniels T L. The potential of nature-based solutions to reduce greenhouse gas emissions from US agriculture[J]. Socio-Ecological Practice Research, 2022, 4: 251-265 |
[60] | 曾楠, 刘桂环, 张洁清, 等. 基于自然的解决方案的农业甲烷减排路径及对策研究[J]. 环境保护, 2022, 50 (7): 54-58. |
Zeng N, Liu G H, Zhang J Q, et al. Nature-based solutions for agricultural methane emission reduction[J]. Environmental Protection, 2022, 50 (7): 54-58 (in Chinese) |
[1] | 张人禾. 实现碳中和目标涉及的科学问题[J]. 气候变化研究进展, 2024, 20(6): 661-668. |
[2] | 柴麒敏, 刘伯翰, 马玉洁, 解瑞丽, 李墨宇. 能源转型与技术创新的全球盘点:进展与评估[J]. 气候变化研究进展, 2024, 20(6): 747-756. |
[3] | 安丰全, 解红力, 李长胜, 刘少慧. COP28能源转型新共识及其解读[J]. 气候变化研究进展, 2024, 20(6): 757-763. |
[4] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
[5] | 袁佳双, 邱爽. IPCC AR6相关甲烷研究进展分析及其对中国的启示[J]. 气候变化研究进展, 2024, 20(3): 327-336. |
[6] | 张贵驰, 李晓梅, 杨峰, 孙瑞玲. 基于“大清单”管理体系的城市减污降碳工作思路研究[J]. 气候变化研究进展, 2024, 20(1): 75-84. |
[7] | 杨子艺, 胡姗, 徐天昊, 燕达, 江亿. 面向碳中和的各国建筑运行能耗与碳排放对比研究方法及应用[J]. 气候变化研究进展, 2023, 19(6): 749-760. |
[8] | 惠婧璇, 朱松丽. 全球甲烷控排政策措施评述及其对中国的启示和建议[J]. 气候变化研究进展, 2023, 19(6): 683-692. |
[9] | 高文康, 胡杰, 马占云, 高东, 刘舒乐, 李照濛, 严薇, 耿瑾泽, 高庆先. 全球发达国家CH4排放现状及特征分析[J]. 气候变化研究进展, 2023, 19(6): 693-703. |
[10] | 刘强, 滕飞, 张林垚. 基于动态矿井数据库的中国煤炭甲烷排放清单改进及回算研究[J]. 气候变化研究进展, 2023, 19(6): 704-713. |
[11] | 杨儒浦, 冯相昭, 王敏, 李丽平. G7国家固体废弃物处理领域甲烷排放驱动力分析[J]. 气候变化研究进展, 2023, 19(5): 573-581. |
[12] | 李易熹, 王霄, 许鸿伟, 廖程浩, 张永波. 广东省废弃物处理领域甲烷排放特征与管理现状分析[J]. 气候变化研究进展, 2023, 19(5): 582-591. |
[13] | 秦晓波, 王金明, 王斌, 万运帆. 稻田甲烷排放现状、减排技术和低碳生产战略路径[J]. 气候变化研究进展, 2023, 19(5): 541-558. |
[14] | 姜鹏南, 窦艳伟, 白富丽, 李一希, 赵星辰, 张旭, 陈子薇, 胡建信. 海南省房间空调行业温室气体协同减排潜力和效益分析[J]. 气候变化研究进展, 2023, 19(4): 496-507. |
[15] | 徐天昊, 胡姗, 杨子艺, 江亿. 中国瑞典建筑碳排放对比及对中国建筑碳中和路径的启示[J]. 气候变化研究进展, 2023, 19(3): 305-319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|