气候变化研究进展 ›› 2023, Vol. 19 ›› Issue (5): 634-644.doi: 10.12006/j.issn.1673-1719.2023.041
收稿日期:
2023-03-09
修回日期:
2023-05-10
出版日期:
2023-09-30
发布日期:
2023-08-01
作者简介:
刘含眸,女,硕士研究生,基金资助:
ZHAO Yu-Rong1, LIU Han-Mou1(), LI Wei1, GONG Li-Dong2
Received:
2023-03-09
Revised:
2023-05-10
Online:
2023-09-30
Published:
2023-08-01
摘要:
文中构建动态可计算一般均衡(CGE)模型,模拟可再生能源发展、碳税和技术进步在我国电力部门低碳转型中的不同成效,探讨电力部门碳达峰、碳中和的时间与路径。研究发现,电力部门清洁化是其实现碳中和的关键,在大力发展可再生能源的情景下,到2060年电力部门接近实现碳中和目标;技术进步是电力部门低碳转型的重要支撑,可再生能源发展且伴随强技术进步情景下,电力部门在2058年后能够实现碳中和;碳税有助于减排但对经济增长产生负面影响;伴随能源结构优化和技术进步,我国可兼顾实现碳中和与经济增长。最后提出,在大力发展可再生能源和致力于能源技术创新的同时,要拓宽低碳转型渠道,推动电力部门低碳转型的高质量发展。
赵玉荣, 刘含眸, 李伟, 弓丽栋. “双碳”目标下我国电力部门低碳转型政策研究[J]. 气候变化研究进展, 2023, 19(5): 634-644.
ZHAO Yu-Rong, LIU Han-Mou, LI Wei, GONG Li-Dong. Research on the low-carbon transition policies of power sector under the “Double Carbon” goal[J]. Climate Change Research, 2023, 19(5): 634-644.
[1] | 何姣, 叶泽. 电力行业碳成本传导的基本原理及均衡模型[J]. 生态经济, 2019, 35 (9): 45-49. |
He J, Ye Z. Basic principles and equilibrium model of carbon cost pass-through in power industry[J]. Ecological Economy, 2019, 35 (9): 45-49 (in Chinese) | |
[2] | 陈怡, 田川, 曹颖, 等. 中国电力行业碳排放达峰及减排潜力分析[J]. 气候变化研究进展, 2020, 16 (5): 632-640. |
Chen Y, Tian C, Cao Y, et al. Research on peaking carbon emissions of power sector in China and the emissions mitigation analysis[J]. Climate Change Research, 2020, 16 (5): 632-640 (in Chinese) | |
[3] | 电力规划设计总院. 中国电力发展报告2022[M]. 北京: 人民日报出版社, 2022: 2-3. |
China Electric Power Planning & Engineering Institute. Report of China power development 2022[M]. Beijing: People’s Daily Press, 2022: 2-3 (in Chinese) | |
[4] | 林伯强. 碳中和进程中的中国经济高质量增长[J]. 经济研究, 2022, 1: 56-71. |
Lin B Q. China’s high-quality economic growth in the process of carbon neutrality[J]. Economic Research Journal, 2022, 1: 56-71 (in Chinese) | |
[5] |
Yu B, Fang D, Xiao K, et al. Drivers of renewable energy penetration and its role in power sector’s deep decarbonization towards carbon peak[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113247
doi: 10.1016/j.rser.2023.113247 URL |
[6] |
Li G, Niu M, Xiao J, et al. The rebound effect of decarbonization in China’s power sector under the carbon trading scheme[J]. Energy Policy, 2023, 177: 113543
doi: 10.1016/j.enpol.2023.113543 URL |
[7] | 黄壁荣, 王子龙, 严俊, 等. “双碳”目标下省级电力部门碳排放权两阶段分配模型[J]. 统计与决策, 2023, 39 (7): 168-173. |
Huang B R, Wang Z L, Yan J, et al. Two-stage allocation model for carbon emission rights of provincial power sector under the goal of carbon peaking and carbon neutrality[J]. Statistics & Decision, 2023, 39 (7): 168-173 (in Chinese) | |
[8] |
Wang P, Wei Y, Yang B, et al. Carbon capture and storage in China’s power sector: optimal planning under the 2℃ constraint[J]. Applied Energy, 2020, 263: 114694
doi: 10.1016/j.apenergy.2020.114694 URL |
[9] |
Kat B. Clean energy transition in the Turkish power sector: a techno-economic analysis with a high-resolution power expansion model[J]. Utilities Policy, 2023, 82: 101538
doi: 10.1016/j.jup.2023.101538 URL |
[10] |
Tang B, Li R, Yu B, et al. How to peak carbon emissions in China’s power sector: a regional perspective[J]. Energy Policy, 2018, 120 (9): 365-381
doi: 10.1016/j.enpol.2018.04.067 URL |
[11] |
刘强, 田川, 郑晓奇, 等. 中国电力行业碳减排相关政策评价[J]. 资源科学, 2017, 39 (12): 2368-2376.
doi: 10.18402/resci.2017.12.15 |
Liu Q, Tian C, Zheng X Q, et al. Evaluation of CO2 emission reduction policies in China’s power sector[J]. Resources Science, 2017, 39 (12): 2368-2376 (in Chinese) | |
[12] |
Zhai H, Gu B, Zhu K, et al. Feasibility analysis of achieving net-zero emissions in China’s power sector before 2050 based on ideal available pathways[J]. Environmental Impact Assessment Review, 2023, 98: 106948
doi: 10.1016/j.eiar.2022.106948 URL |
[13] |
Chen Q, Kang C, Xia Q, et al. Preliminary exploration on low-carbon technology roadmap of China’s power sector[J]. Energy, 2011, 36 (3): 1500-1512
doi: 10.1016/j.energy.2011.01.015 URL |
[14] |
Luo S, Hu W, Liu W, et al. Study on the decarbonization in China’s power sector under the background of carbon neutrality by 2060[J]. Renewable and Sustainable Energy Reviews, 2022, 166: 112618
doi: 10.1016/j.rser.2022.112618 URL |
[15] |
Hyun M, Cherp A, Jewell J, et al. Feasibility trade-offs in decarbonizing the power sector with high coal dependence: the case of Korea[J]. Renewable and Sustainable Energy Transition, 2023, 3: 100050
doi: 10.1016/j.rset.2023.100050 URL |
[16] |
Wang X, Fan F, Liu C, et al. Regional differences and driving factors analysis of carbon emissions from power sector in China[J]. Ecological Indicators, 2022, 142: 109297
doi: 10.1016/j.ecolind.2022.109297 URL |
[17] | Chen G, Hou F, Li J, et al. Decoupling analysis between carbon dioxide emissions and the corresponding driving forces by Chinese power industry[J]. Environmental Science and Pollution Research, 2021, 28 (2): 69-78 |
[18] |
Luo F, Guo Y, Yao M, et al. Carbon emissions and driving forces of China’s power sector: input-output model based on the disaggregated power sector[J]. Journal of Cleaner Production, 2020, 268: 121925
doi: 10.1016/j.jclepro.2020.121925 URL |
[19] | 张金良, 关轶群. 基于IO-SDA模型的电力行业碳排放影响因素分析[J]. 华北电力大学学报 (社会科学版), 2019 (6): 39-46. |
Zhang J L, Guan Y Q. Analysis of the influence factor of carbon emission based on IO-SDA model[J]. Journal of North China Electric Power University (Social Sciences), 2019 (6): 39-46 (in Chinese) | |
[20] |
Wang Y, Su X, Qi L, et al. Feasibility of peaking carbon emissions of the power sector in China’s eight regions: decomposition, decoupling, and prediction analysis[J]. Environmental Science and Pollution Research, 2019, 26 (28): 29212-29233
doi: 10.1007/s11356-019-05909-1 URL |
[21] |
Peng X, Tao X. Decomposition of carbon intensity in electricity production: technological innovation and structural adjustment in China’s power sector[J]. Journal of Cleaner Production, 2018, 172 (1): 805-818
doi: 10.1016/j.jclepro.2017.10.236 URL |
[22] | 吴郧, 余碧莹, 邹颖, 等. 碳中和愿景下电力部门低碳转型路径研究[J]. 中国环境管理, 2021, 13 (3): 48-55. |
Wu Y, Yu B Y, Zou Y, et al. The path of low-carbon transformation in China’s power sector under the vision of carbon neutrality[J]. Chinese Journal of Environmental Management, 2021, 13 (3): 48-55 (in Chinese) | |
[23] | 刘睿, 姚西龙. 山西省电力部门实现碳中和的路径研究[J]. 中国煤炭, 2021, 47 (8): 8-16. |
Liu R, Yao X L. Study on the realizing path of carbon neutrality in power sector of Shanxi province[J]. China Coal, 2021, 47 (8): 8-16 (in Chinese) | |
[24] |
Chen S, Liu P, Li Z. Low carbon transition pathway of power sector with high penetration of renewable energy[J]. Renewable and Sustainable Energy Reviews, 2020, 130: 109985
doi: 10.1016/j.rser.2020.109985 URL |
[25] | 张小丽, 刘俊伶, 王克, 等. 中国电力部门中长期低碳发展路径研究[J]. 中国人口·资源与环境, 2018, 28 (4): 68-77. |
Zhang X L, Liu J L, Wang K, et al. Study on medium and long-term low-carbon development pathway of China’s power sector[J]. China Population, Resources and Development, 2018, 28 (4): 68-77 (in Chinese) | |
[26] | 马喜立. 大气污染治理对经济影响的CGE模型分析[D]. 北京: 对外经济贸易大学, 2017. |
Ma X L. To evaluate economic impacts of air pollution control based on CGE model[D]. Beijing: University of International Business and Economics, 2017 (in Chinese) | |
[27] |
Lindner S, Legault J, Guan D. Disaggregating the electricity sector of China’s input-output table for improved environmental life-cycle assessment[J]. Economic Systems Research, 2013, 25 (3): 300-320
doi: 10.1080/09535314.2012.746646 URL |
[28] |
Allan G, Lecca P, Mcgregor P, et al. The economic and environmental impact of a carbon tax for Scotland: a computable general equilibrium analysis[J]. Ecological Economics, 2014, 100: 40-50
doi: 10.1016/j.ecolecon.2014.01.012 URL |
[29] |
Guo Z, Zhang X, Zheng Y, et al. Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors[J]. Energy Economics, 2014, 45: 455-462
doi: 10.1016/j.eneco.2014.08.016 URL |
[30] |
Dong B, Wei W, Ma X, et al. On the impacts of carbon tax and technological progress on China[J]. Applied Economics, 2018, 50 (4): 389-406
doi: 10.1080/00036846.2017.1316826 URL |
[31] | 张希良, 黄晓丹, 张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022, 38 (1): 35-66. |
Zhang X L, Huang X D, Zhang D, et al. Research on the pathway and policies for China’s energy and economy transformation toward carbon neutrality[J]. Journal of Management World, 2022, 38 (1): 35-66 (in Chinese) | |
[32] | 中金公司研究部, 中金研究院. 碳中和经济学[M]. 北京: 中信出版集团, 2021: 14-15. |
Research Department of CICC, CICC Global Institute. Carbon neutralization economics[M]. Beijing: CITIC Press Group, 2021: 14-15 (in Chinese) | |
[33] | 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口?资源与环境, 2020, 30 (11): 1-25. |
Project Comprehensive Report Preparation Team. Comprehensive report on China’s long-term low-carbon development strategy and transformation path[J]. China Population, Resources and Development, 2020, 30 (11): 1-25 (in Chinese) | |
[34] | 史丹, 李鹏. “双碳”目标下工业碳排放结构模拟与政策冲击[J]. 改革, 2021 (12): 30-44. |
Shi D, Li P. Industrial carbon emission structure simulation and policy impact under the target of “Double Carbon”[J]. Reform, 2021 (12): 30-44 (in Chinese) |
[1] | 潘晓滨, 刘尚文. 应对气候变化背景下我国转型金融法制化路径探析[J]. 气候变化研究进展, 2024, 20(4): 465-474. |
[2] | 张宁, 庞军. 全国碳市场引入CCER交易及抵销机制的经济影响研究[J]. 气候变化研究进展, 2022, 18(5): 622-636. |
[3] | 袁志逸, 李振宇, 康利平, 谭晓雨, 周新军, 李晓津, 李超, 彭天铎, 欧训民. 中国交通部门低碳排放措施和路径研究综述[J]. 气候变化研究进展, 2021, 17(1): 27-35. |
[4] | 张文华, 闫庆友, 何钢, 袁家海. 气候变化约束下中国电力系统低碳转型路径及策略[J]. 气候变化研究进展, 2021, 17(1): 18-26. |
[5] | 刘俊伶, 王克, 夏侯沁蕊, 刘芳名, 邹骥, 孔英. 城镇化背景下中国长期低碳转型路径研究[J]. 气候变化研究进展, 2020, 16(3): 355-366. |
[6] | 何建坤. 全球低碳化转型与中国的应对战略[J]. 气候变化研究进展, 2016, 12(5): 357-365. |
[7] | 马翠梅, 葛全胜. 中国省域电力部门CO2排放计算方法研究[J]. 气候变化研究进展, 2014, 10(5): 377-383. |
[8] | 庄贵阳. 欧盟"气候行动与可再生能源综合计划"建议草案: 核心要点与战略意义[J]. 气候变化研究进展, 2008, 4(004): 250-254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|