气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (4): 420-429.doi: 10.12006/j.issn.1673-1719.2020.197
收稿日期:
2020-09-04
修回日期:
2020-11-01
出版日期:
2021-07-30
发布日期:
2021-08-11
通讯作者:
周波涛
作者简介:
蔡怡亨,男,硕士研究生, 基金资助:
CAI Yi-Heng1,2(), HAN Zhen-Yu3, ZHOU Bo-Tao1,2(
)
Received:
2020-09-04
Revised:
2020-11-01
Online:
2021-07-30
Published:
2021-08-11
Contact:
ZHOU Bo-Tao
摘要:
基于区域气候模式RegCM4对4个全球气候模式动力降尺度模拟(分别记为CdR、EdR、HdR、MdR)以及高分辨率格点观测数据CN05.1的日降水数据,利用“追踪式”客观识别方法,对1981—2005年中国区域性暴雨事件进行了识别,并评估了模式对其气候特征的模拟性能。结果表明:4个动力降尺度模拟以及多模式集合能较好地模拟区域性暴雨事件发生频次、平均持续时间、平均降水量、平均影响范围和综合强度的年内分布特征以及气候平均值。观测的区域性暴雨事件持续时间、平均降水量、平均影响范围和综合强度在不同区间的频率分布特征以及区域性暴雨事件的累计频次、累计持续时间和累计降水量的空间分布特征也能得到很好地再现。模拟值与观测的空间相关系数都在0.9以上,且均方根误差不超过0.4。不过,相对而言,模式模拟的区域性暴雨事件频次略少,主要由对中度区域性暴雨事件低估所致;模拟的平均持续时间和平均降水量略偏高,而平均影响范围略偏小。综合强度方面,除HdR外,其余模拟均有所高估,尤其是MdR。在频率分布特征和空间分布方面,CdR的模拟性能低于其他模拟。多模式集合模拟的平均持续时间、平均降水量、平均影响范围和综合强度的相对误差分别为13%、2%、-11%和3%。
蔡怡亨, 韩振宇, 周波涛. 对基于RegCM4降尺度的中国区域性暴雨事件模拟评估[J]. 气候变化研究进展, 2021, 17(4): 420-429.
CAI Yi-Heng, HAN Zhen-Yu, ZHOU Bo-Tao. Evaluation of RegCM4 downscaling simulations on regional rainstorm events in China[J]. Climate Change Research, 2021, 17(4): 420-429.
![]() |
表1 1981—2005年平均的中国区域性暴雨事件发生频次以及不同等级事件发生频次占总频次的百分比
Table 1 Frequency of regional rainstorm events in China averaged from 1981 to 2005 and the percentages of different category of regional rainstorm events to total events
![]() |
图1 1981—2005年观测和模拟的各月区域性暴雨事件频次(a)、持续时间(b)、平均降水量(c)、平均影响范围(d)和综合强度(e)的占比分布
Fig. 1 Monthly distribution of the percentage of frequency (a), duration (b), average rainfall amount (c), average extent (d), and average comprehensive intensity (e) of regional rainstorm events during 1981-2005
图2 1981—2005年模拟和观测的中国区域性暴雨事件持续时间(a)、平均降水量(b)、平均影响范围(c)和综合强度(d)的频率占比分布
Fig. 2 Frequency percentage distributions for duration (a), average rainfall amount (b), average extent (c), and average comprehensive intensity (d) of regional rainstorm events during 1981-2005
![]() |
表3 1981—2005年模式模拟的中国区域性暴雨事件各指标频率分布的S评分统计
Table 3 S score of the frequency percentage distribution for each metric of regional rainstorm events in China during 1981-2005
![]() |
图3 观测(a)和MME模拟(b)的1981—2005年平均的区域性暴雨事件年累计频次空间分布以及MME模拟的相对误差(c) 注:(c)图左下角值为相对误差绝对值<0.4的面积比例,下同。
Fig. 3 Observed (a) and MME simulated (b) climatological distribution of the accumulative frequency of regional rainstorm events during 1981-2005 and the relative errors of the MME simulation (c) with reference to the observation (the number in the Fig. (c) indicates the proportion of areas where the absolute relative error is less than 0.4)
图6 1981—2005年平均的中国区域暴雨事件累计频次、持续时间和降水量的泰勒分布图 注:1, MME;2, CdR;3, EdR;4, HdR;5, MdR。
Fig. 6 Taylor diagram for accumulative frequency, duration and rainfall amount of regional rainstorm events in China during 1981-2005 with reference to the observation
[1] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 |
[2] | Wang Y Q, Zhou L. Observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation[J]. Geophysical Research Letters, 2005, 32(9), L09707 |
[3] |
Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18(7):1096-1108
doi: 10.1175/JCLI-3318.1 URL |
[4] |
Zhang D Q, Feng G L, Hu J G. Trend of extreme precipitation events over China in last 40 years[J]. Chinese Physics B, 2008, 17(2):736-742
doi: 10.1088/1674-1056/17/2/062 URL |
[5] |
Zhou B T, Xu Y, Wu J, et al. Changes in temperature and precipitation extreme indices over China: analysis of a high-resolution grid dataset[J]. International Journal of Climatology, 2016, 36(3):1051-1066
doi: 10.1002/joc.4400 URL |
[6] |
Chen H P. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models[J]. Chinese Science Bulletin, 2013, 58(12):1462-1472
doi: 10.1007/s11434-012-5612-2 URL |
[7] |
Zhou B T, Wen H Q, Xu Y, et al. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles[J]. Journal of Climate, 2014, 27(17):6591-6611
doi: 10.1175/JCLI-D-13-00761.1 URL |
[8] |
Chen H P, Sun J Q, Lin W Q, et al. Comparison of CMIP6 and CMIP5 models in simulating climate extremes[J]. Science Bulletin, 2020, 65:1415-1418
doi: 10.1016/j.scib.2020.05.015 URL |
[9] |
Xu Y, Zhang B, Zhou B T, et al. Projected risk of flooding disaster in China based on CMIP5 models[J]. Advances in Climate Change Research, 2014, 5(2):57-65
doi: 10.3724/SP.J.1248.2014.057 URL |
[10] | Klein Tank A M G, Zwiers F W, Zhang X B. Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation[C]. World Meteorological Organization: Climate Data and Monitoring, 2009, 1-56 |
[11] | 钱维宏. 气候变化与中国极端气候事件图集 [M]. 气象出版社, 2011: 146-156. |
Qian W H. Atlas of climate change and China extreme climate events [M]. Beijing: China Meteorological Press, 2011: 146-156(in Chinese) | |
[12] |
Ren F M, Cui D L, Gong Z Q, et al. An objective identification technique for regional extreme events[J]. Journal of Climate, 2012, 25(20):7015-7027
doi: 10.1175/JCLI-D-11-00489.1 URL |
[13] |
Zou X K, Ren F M. Changes in regional heavy rainfall events in China during 1961-2012[J]. Advances in Atmospheric Sciences, 2015, 32(5):704-714
doi: 10.1007/s00376-014-4127-y URL |
[14] |
Wu Y J, Ji H X, Wen J H, et al. The characteristics of regional heavy precipitation events over eastern monsoon China during 1960-2013[J]. Global and Planetary Change, 2019, 172:414-427
doi: 10.1016/j.gloplacha.2018.11.001 URL |
[15] | 景丞, 姜彤, 王艳君, 等. 中国区域性极端降水事件及人口经济暴露度研究[J]. 气象学报, 2016, 74(4):572-582. |
Jing C, Jiang T, Wang Y J, et al. A study on regional extreme precipitation events and the exposure of population and economy in China[J]. Acta Meteorologica Sinica, 2016, 74(4):572-582 (in Chinese) | |
[16] | 叶殿秀, 王遵娅, 高荣, 等. 1961—2016年我国区域暴雨过程的客观识别及其气候特征[J]. 气候变化研究进展, 2019, 15(6):575-583. |
Ye D X, Wang Z Y, Gao R, et al. Objective identification and climatic characters of the regional rainstorm event in China from 1961 to 2016[J]. Climate Change Research, 2019, 15(6):575-583 (in Chinese) | |
[17] |
Yu E T, Sun J Q, Chen H P, et al. Evaluation of a high-resolution historical simulation over China: climatology and extremes[J]. Climate Dynamics, 2015, 45(7-8):2013-2031
doi: 10.1007/s00382-014-2452-6 URL |
[18] |
Gao X J, Shi Y, Han Z Y, et al. Performance of RegCM4 over major river basins in China[J]. Advances in Atmospheric Sciences, 2017, 34(4):441-455
doi: 10.1007/s00376-016-6179-7 URL |
[19] |
Zou L W, Zhou T J. Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: comparison between RCM downscaling and the driving GCM[J]. Advances in Atmospheric Sciences, 2013, 30(3):806-818
doi: 10.1007/s00376-013-2209-x URL |
[20] |
Yao J C, Zhou T J, Guo Z, et al. Improved performance of high-resolution atmospheric models in simulating the East-Asian summer monsoon rainbelt[J]. Journal of Climate, 2017, 30(21):8825-8840
doi: 10.1175/JCLI-D-16-0372.1 URL |
[21] |
Giorgi F, Coppola E, Solmon F, et al. RegCM4: model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 2012, 52(29):7-29
doi: 10.3354/cr01018 URL |
[22] |
Gao X J, Shi Y, Giorgi F. Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model[J]. Atmospheric and Oceanic Science Letters, 2016, 9(4):246-254
doi: 10.1080/16742834.2016.1172938 URL |
[23] |
Gao X J, Wu J, Shi Y, et al. Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations[J]. Atmospheric and Oceanic Science Letters, 2018, 11(4):291-299
doi: 10.1080/16742834.2018.1471578 URL |
[24] |
Han Z Y, Zhou B T, Xu Y, et al. Projected changes in haze pollution potential in China: an ensemble of regional climate model simulations[J]. Atmospheric Chemistry and Physics, 2017, 17(16):10109-10123
doi: 10.5194/acp-17-10109-2017 URL |
[25] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4):1102-1111. |
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4):1102-1111 (in Chinese) | |
[26] | Tong Y, Gao X J, Han Z Y, et al. Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods[J]. Climate Dynamics, 2020, DOI: 10.1007/s00382-020-05447-4 |
[27] |
Lu E, Zhao W, Zou X, et al. Temporal-spatial monitoring of extreme precipitation event: determining simultaneously the time period it lasts and the geographic region it affects[J]. Journal of Climate, 2017, 30(16):6123-6132
doi: 10.1175/JCLI-D-17-0105.1 URL |
[28] |
Perkins S E, Pitman A J, Holbrook N J, et al. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions[J]. Journal of Climate, 2007, 20(17):4356-4376
doi: 10.1175/JCLI4253.1 URL |
[29] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D7):7183-7192
doi: 10.1029/2000JD900719 URL |
[30] |
Jiang D B, Tian Z P. East Asian monsoon change for the 21st century: results of CMIP3 and CMIP5 models[J]. Chinese Science Bulletin, 2013, 58(12):1427-1435
doi: 10.1007/s11434-012-5533-0 URL |
[31] |
Jiang D B, Tian Z P, Lang X M. Reliability of climate models for China through the IPCC Third to Fifth assessment reports[J]. International Journal of Climatology, 2016, 36(3):1114-1133
doi: 10.1002/joc.4406 URL |
[32] |
Xu Z F, Hou Z L, Han Y, et al. A diagram for evaluating multiple aspects of model performance in simulating vector fields[J]. Geoscientific Model Development, 2016, 9(12):4365-4380
doi: 10.5194/gmd-9-4365-2016 URL |
[33] |
Wu J, Gao X J. Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations[J]. Climate Dynamics, 2020, 54(1-2):1113-1130
doi: 10.1007/s00382-019-05047-x URL |
[34] |
Niu X R, Wang S Y, Tang J P, et al. Multimodel ensemble projection of precipitation in Eastern China under A1B emission scenario[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(19):9965-9980
doi: 10.1002/jgrd.v120.19 URL |
[35] |
Ou T H, Chen D L, Linderholm H W, et al. Evaluation of global climate models in simulating extreme precipitation in China[J]. Tellus A: Dynamic Meteorology and Oceanography, 2013, 65(1), 19799
doi: 10.3402/tellusa.v65i0.19799 URL |
[36] |
Yang S L, Feng J M, Dong W J, et al. Analyses of extreme climate events over China based on CMIP5 historical and future simulations[J]. Advances in Atmospheric Sciences, 2014, 31(5):1209-1220
doi: 10.1007/s00376-014-3119-2 URL |
[37] |
Zhou T J, Chen Z M, Zou L W, et al. Development of climate and Earth System Models in China: past achievements and new CMIP6 results[J]. Journal of Meteorological Research, 2020, 34(1):1-19
doi: 10.1007/s13351-020-9164-0 URL |
[1] | 高筱懿, 赵俊虎, 周杰, 钱忠华, 封国林. 1961—2018年长江中下游地区暴雨过程的客观识别及其变化特征[J]. 气候变化研究进展, 2021, 17(3): 329-339. |
[2] | 程阳, 周波涛, 韩振宇, 徐影. 一组RegCM4动力降尺度对中国群发性高温事件的模拟评估[J]. 气候变化研究进展, 2020, 16(6): 657-666. |
[3] | 刘冲,赵平. 1979—2016年四川盆地低涡的气候特征分析[J]. 气候变化研究进展, 2020, 16(2): 203-214. |
[4] | 叶殿秀,王遵娅,高荣,王荣,肖潺. 1961—2016年我国区域性暴雨过程的客观识别及其气候特征[J]. 气候变化研究进展, 2019, 15(6): 575-583. |
[5] | 贾孜拉·拜山, 李维京, 孙丞虎, 左金清, 张若楠, 刘景鹏. 1961—2014年我国西南地区干湿季变化特征[J]. 气候变化研究进展, 2017, 13(2): 103-116. |
[6] | 左金清, 李维京, 任宏利. CMIP5模式对北极涛动的模拟评估[J]. 气候变化研究进展, 2013, 9(3): 157-164. |
[7] | 张春花;吴胜安;林建兴;许向春;郭冬艳. 1969-2008年海南省雾的气候特征与变化趋势[J]. 气候变化研究进展, 2010, 6(05): 349-355. |
[8] | 周荣卫;何晓凤;苗世光;李青春. 北京地区大气环流型及气候特征[J]. 气候变化研究进展, 2010, 6(05): 338-343. |
[9] | 伍红雨;杜尧东. 1961-2008年华南区域寒潮变化的气候特征[J]. 气候变化研究进展, 2010, 6(03): 192-197. |
[10] | 胡娅敏;宋丽莉. 登陆中国热带气旋台风季参数的气候特征分析[J]. 气候变化研究进展, 2009, 5(02): 90-094. |
[11] | 王小玲 宋文玲. 近30a我国5级以上风日数的时空变化特征[J]. 气候变化研究进展, 2008, 4(006): 347-351. |
[12] | 张艳梅 江志红 王冀 刘毅. 贵州夏季暴雨的气候特征[J]. 气候变化研究进展, 2008, 4(003): 182-186. |
[13] | 陈潇潇 郭品文 罗勇. 中国不同等级雾日的气候特征[J]. 气候变化研究进展, 2008, 4(002): 106-110. |
[14] | 王遵娅 张强 陈峪 赵珊珊 曾红玲 张勇 刘秋锋. 2008年初我国低温雨雪冰冻灾害的气候特征[J]. 气候变化研究进展, 2008, 4(002): 63-067. |
[15] | 王绍武. 中国冷冬的气候研究[J]. 气候变化研究进展, 2008, 4(002): 68-072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|