[1] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013: 1-17 | [2] | IPCC. Climate change 2014: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2014: 1-32 | [3] | World Bank . Turn down the heat: why a 4℃ warmer world must be avoided. Turn down the heat [R]. Washington D C: World Bank, 2012 | [4] | Schellnhuber H, Hare B, Serdeczny O , et al. Turn down the heat: climate extremes, regional impacts, and the case for resilience[J]. Government Information Quarterly, 2013,31(2):346-347 | [5] | Meinshausen M, Meinshausen N, Hare W , et al. Greenhouse-gases mission targets for limiting global warming to 2℃[J]. Nature, 2009,458(7242):1158-1162 | [6] | IPCC. Climate change 2007: impacts, adaptation and vulnerability [M]. Cambridge: Cambridge University Press, 2007: 779-810 | [7] | Alward R D, Detling J K, Milchunas D G . Grassland vegetation changes and nocturnal global warming[J]. Science, 1999,283:229-231 | [8] | 张厚瑄 . 中国种植制度对全球气候变化响应的有关问题II. 我国种植制度对气候变化响应的主要问题[J]. 中国农业气象, 2000,21(1):9-13 | [9] | 王馥棠, 赵宗慈, 王石立 , 等. 气候变化对农业生态的影响[M]. 北京: 气象出版社, 2003: 131-134 | [10] | 秦大河 . 中国气候与环境演变[M]. 北京: 科学出版社, 2005: 455-506 | [11] | Field C B, Behrenfeld M J, Randerson J T , et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998,281(5374):237-240 | [12] | Cao M K, Woodward F I . Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change[J]. Global Change Biology, 1998,4(2):185-198 | [13] | Koffi E N, Rayner P J, Scholze M , et al. Atmospheric constraints on gross primary productivity and net ecosystem productivity: results from a carbon-cycle data assimilation system[J]. Global Biogeochemical Cycles, 2012,26(1):104-105 | [14] | Lieth H . Modelling the primary productivity of the world[J]. Nature and Resources, 1972,8(2):5-10 | [15] | Uchijima Z, Seino H . Agroclimatic evaluation of net primary productivity of natural vegetation (1): Chikugo model for evaluating primary productivity[J]. Journal of Agricultural Meteorology, 1985,40(4):343-352 | [16] | 张新时, 周广胜 . 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996,20(1):11-19 | [17] | 仲晓春, 陈雯, 刘涛 , 等. 2001—2010年中国植被NPP的时空变化及其与气候的关系[J]. 中国农业资源与区划, 2016,37(9):16-22 | [18] | 任永建, 洪国平, 肖莺 , 等. 长江流域上游气候变化的模拟评估及其未来年情景预估[J]. 长江流域资源与环境, 2013,7(7):894-899 | [19] | 李明星, 马柱国 . 中国气候干湿变化及气候带边界演变: 以集成土壤湿度为指标[J]. 科学通报, 2012,57(28):2740-2754 | [20] | Hempel S, Frieler K, Warszawski L , et al. A trend-preserving bias correction the ISI-MIP approach[J]. Earth System Dynamics, 2013 ( 4):49-92 | [21] | Vetter V, Huang S, Aich V , et al. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents[J]. Earth System Dynamics, 2015 ( 6):17-43 | [22] | Warszawski L, Frieler K, Huber V , et al. The inter-sectoral impact model intercomparison project (ISI-MIP): project framework[J]. Proceedings of the National Academy of Sciences, 2014,111(9):3228-3232 | [23] | McWeeney C F, Jones R G . How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP[J]. Climate Services, 2016,1(C):24-29 | [24] | Su B D, Huang J L, Zeng X F , et al. Impacts of climate change on streamflow in the upper Yangtze River Basin[J]. Climatic Change, 2017,141(3):533-546 | [25] | Vuuren D, Edmonds J, Kaimuma M , et al. The representative concentration pathways: an overview[J]. Climatic Change, 2011,109(1-2):5-31 | [26] | Taylor K E . Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001,106(7):7183-7192 | [27] | Lieth H . Modelling the primary productivity of the world[M]. Springer Berlin Heidelberg, 1992: 72-79 | [28] | 刘洪杰 . Miami模型的生态学应用[J]. 生态科学, 1997,16(1):52-55 | [29] | Lieth H, Box E O . Evapotranspiration and primary production [C]// Thornthwaite W. Memorial model, publications in climatology. New Jersey: C. W. Thornthwaite Associates, 1972: 37-46 | [30] | 周广胜, 张新时 . 自然植被的净第一性生产力模型初探[J]. 植物生态学报, 1995,19(3):193-200 | [31] | 周广胜, 张新时 . 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996,20(1):11-19 | [32] | 周广胜, 王玉辉 . 全球生态学[M]. 北京: 气象出版社, 2003: 82- 89, 100-102 | [33] | 郑元润, 周广胜, 张新时 , 等. 农业生产力模型初探[J]. 植物生态学报, 1997 ( 9):831-836 | [34] | 李恒凯, 欧彬, 刘雨婷 . 基于MOD17A3的南岭山地森林区植被NPP时空分异分析[J]. 西北林学院学报, 2017,32(6):197-202 | [35] | 梁玉莲, 延晓冬 . RCPs情景下中国21世纪气候变化预估及不确定性分析[J]. 热带气象学报, 2016,32(2):183-192 | [36] | Janacek J . Stomatal limitation of photosynjournal as affected by water stress and CO2 concentration[J]. Photosynthetica, 1997,34(3):473-476 | [37] | Melillo J M, Mcguire A D, Kicklighter D W , et al. Global climate change and terrestrial net primary production[J]. Nature, 1993,363(6426):234-240 |
|