[1] | IPCC. Summary for policymakers [M/OL]//IPCC. IPCC special report on the ocean and cryosphere in a changing climate. 2019 [ 2019-10-02]. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/03_SROCC_SPM_FINAL.pdf | [2] | IPCC. The ocean and cryosphere in a changing climate [M/OL]. 2019 [ 2019-10-10]. https://www.ipcc.ch/2019/09/23/b-roll-ipcc-srocc/ | [3] | Allen S K, Cox S C, Owens I F . Rock avalanches and other landslides in the central southern Alps of New Zealand: a regional study considering possible climate change impacts[J]. Landslides, 2011,8(1):33-48. DOI: 10.1007/s10346-010-0222-z | [4] | Evans S G, Delaney K B. Catastrophic mass flows in the mountain glacial environment [M] //Haeberli W, Whitemann C. Snow and ice-related hazards, risks, and disasters. UK: Academic Press, 2015 | [5] | Eichel J, Draebing D, Meyer N . From active to stable: paraglacial transition of alpine lateral moraine slopes[J]. Land Degradation and Development, 2018,29(11):4158-4172. DOI: 10.1002/ldr.3140 | [6] | Cloutier C, Locat J, Geertsema M , et al. Slope safety preparedness for impact of climate change [M]. Florida: CRC Press, 2017: 71-104 | [7] | Schweizer J, Jamieson J B, Schneebeli M . Snow avalanche formation[J]. Reviews of Geophysics, 2003,41(4):1016. DOI: 10.1029/2002RG000123 | [8] | Castebrunet H, Eckert N, Giraud G , et al. Projected changes of snow conditions and avalanche activity in a warming climate: the French Alps over the 2020-2050 and 2070-2100 periods[J]. The Cryosphere, 2014,8(5):1673-1697 | [9] | Steinkogler W, Sovilla B, Lehning M . Influence of snow cover properties on avalanche dynamics[J]. Cold Regions Science and Technology, 2014,97:121-131. DOI: 10.1016/j.coldregions.2013.10.002 | [10] | Carrivick J L, Tweed F S . A global assessment of the societal impacts of glacier outburst floods[J]. Global and Planetary Change, 2016,144:1-16. DOI: 10.1016/j.gloplacha.2016.07.001 | [11] | Erokhin S A, Zaginaev V V, Meleshko A A . Debris flows triggered from non-stationary glacier lake outbursts: the case of the Teztor Lake complex (northern Tian Shan, Kyrgyzstan)[J]. Landslides, 2017,15(1):83-98. DOI: 10.1007/s10346-017-0862-3 | [12] | Fujita K, Sakai A, Takenaka S , et al. Potential flood volume of Himalayan glacial lakes[J]. Natural Hazards & Earth System Sciences, 2013,13(7):1827-1839 | [13] | Narama C, Daiyrov M, Tadono T , et al. Seasonal drainage of supraglacial lakes on debris-covered glaciers in the Tian Shan mountains, Central Asia[J]. Geomorphology, 2017,286:133-142. DOI: 10.1016/j.geomorph.2017.03.002 | [14] | Harrison S, Kargel J S, Huggel C , et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods[J]. The Cryosphere, 2018,12(4):1195-1209 | [15] | Bevington A, Copland L . Characteristics of the last five surges of Lowell glacier, Yukon, Canada, since 1948[J]. Journal of Glaciology, 2014,60(219):113-123. DOI: 10.3189/2014JoG13J134 | [16] | Round V, Leinss S, Huss M , et al. Surge dynamics and lake outbursts of Kyagar glacier, Karakoram[J]. The Cryosphere, 2017,11(2):723-739 | [17] | Steiner J F, Kraaijenbrink P D A, Jiduc S G , et al. Brief communication: the Khurdopin glacier surge revisited: extreme flow velocities and formation of a dammed lake in 2017[J]. The Cryosphere, 2018,12(1):95-101. DOI: 10.5194/tc-12-95-2018 | [18] | Kargel J S, Leonard J G, Shugar H D , et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake [J]. Science, 2016,351(6269):aac8353. DOI: 10.1126/science.aac8353 | [19] | Smale D A, Wernberg T, Eric C J , et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services[J]. Nature Climate Change, 2019,9:306-312. DOI: 10.1038/s41558-019-0412-1 | [20] | Manta G, de Mello S, Trinchin R , et al. The 2017 record marine heatwave in the southwestern Atlantic shelf[J]. Geophysical Research Letters, 2018,45(22). DOI: 10.1029/2018GL081070 | [21] | Reimer J J, Rodrigo V, David R , et al. Sea surface temperature influence on terrestrial gross primary production along the southern California current[J]. Plos One, 2015,10(4):e0125177 | [22] | Berdalet E, Fleming L E, Gowen R , et al. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century[J]. Journal of the Marine Biological Association of the United Kingdom, 2016,96(1):61-91 | [23] | United Nations, North coast of Perú Flash Appeal. United Nations office for the coordination of humanitarian affairs, Geneva, Switzerland [EB/OL]. 2017 [ 2019-10-10]. https://reliefweb.int/report/peru/north-coast-peru-2017-flashappeal-april | [24] | Cai W, Borlace S, Lengaigne M , et al. Increasing frequency of extreme El Niño events due to greenhouse warming[J]. Nature Climate Change, 2014,4(2):111-116. DOI: 10.1038/NCLIMATE2100 | [25] | Santoso A, McPhaden M J, Cai W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño[J]. Reviews of Geophysics, 2017,55(4):1079-1129. DOI: 10.1002/2017rg000560 | [26] | Ward P J, Kummu M, Lall U . Flood frequencies and durations and their response to El Niño[J]. Journal of Hydrology, 2016,539:358-378. DOI: 10.1016/j.jhydrol.2016.05.045 | [27] | Scaife A A, Comer R, Dunstone N , et al. Predictability of European winter 2015/2016[J]. Atmospheric Science Letters, 2017,18. DOI: 10.1002/asl.721 | [28] | Zhai P M, Yu R, Guo Y J , et al. The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate[J]. Journal of Meteorological Research, 2016,30(3):283-297. DOI: 10.1007/s13351-016-6101-3 | [29] | Cai W, Wang G, Santoso A , et al. Increased frequency of extreme La Niña events under greenhouse warming[J]. Nature Climate Change, 2015,5(2):132-137 | [30] | Zhang H, Guan Y . Impacts of four types of ENSO events on tropical cyclones making landfall over mainland China based on three best-track datasets[J]. Advances in Atmospheric Sciences, 2014,31(1):154-164. DOI: 10.1007/s00376-013-2146-8 | [31] | Thompson L G, Davis M E, Mosley-Thompson E , et al. Impacts of recent warming and the 2015/16 El Niño on tropical Peruvian ice fields[J]. Journal of Geophysical Research: Atmospheres, 2017,122(23):12688-12701 | [32] | WMO. Exceptionally strong El Niño has passed its peak, but impacts continue[R/OL]. 2016 [ 2019-10-10]. https://public.wmo.int/en/media/press-release/exceptionally-strong-el-ni%C3%B1o-has-passed-its-peak-impacts-continue | [33] | Yuan X, Wang S, Hu Z Z . Do climate change and El Niño increase likelihood of Yangtze River extreme rainfall?[J]. Bulletin of the American Meteorological Society, 2018,99(1):S113-S117. DOI: 10.1175/BAMS-D-17-0118.1 | [34] | Wang B, Liu J, Kim H J , et al. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation[J]. Proceedings of the National Academy of Sciences, 2013,110(14):5347-5352 | [35] | Buckley M W, Marshall J . Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review[J]. Reviews of Geophysics, 2016,54(1):5-63. DOI: 10.1002/2015rg000493 | [36] | Rahmstorf S, Box J E, Feulner G , et al. Exceptional twentieth-century slowdown in Atlantic ocean overturning circulation[J]. Nature Climate Change, 2015,5(5):475-480 | [37] | Yang Q, Dixon T H, Myers P G , et al. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation[J]. Nature Communications, 2016,7:10525 | [38] | Bakker P, Schmittner A, Lenaerts J T M , et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting[J]. Geophysical Research Letters, 2016,43(23):12252-12260 | [39] | Woollings T, Gregory J M, Pinto J G , et al. Response of the north Atlantic storm track to climate change shaped by ocean-atmosphere coupling[J]. Nature Geoscience, 2012,5(5):313-317. DOI: 10.1038/ngeo1438 | [40] | Jackson L C, Kahana R, Graham T , et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM[J]. Climate Dynamics, 2015,45(11-12):3299-3316. DOI: 10.1007/s00382-015-2540-2 | [41] | Haarsma R J, Selten F M, Drijfhout S S . Decelerating Atlantic Meridional Overturning Circulation main cause of future west European summer atmospheric circulation changes[J]. Environmental Research Letters, 2015,10(9):094007. DOI: 10.1088/1748-9326/10/9/094007 | [42] | Claret M, Galbraith E D, Palter J B , et al. Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic[J]. Nature Climate Change, 2018,8(10):868-872. DOI: 10.1038/s41558-018-0263-1 | [43] | John J G, Stock C A, Dunne J P . A more productive, but different, ocean after mitigation[J]. Geophysical Research Letters, 2015,42(22):9836-9845. DOI: 10.1002/2015gl066160 | [44] | Osman M B, Das S B, Trusel L D , et al. Industrial-era decline in subarctic Atlantic productivity[J]. Nature, 2019,569(7757):1-5. DOI: 10.1038/s41586-019-1181-8 | [45] | Beck M W, Losada I J, Menéndez Pelayo , et al. The global flood protection savings provided by coral reefs[J]. Nature Communications, 2018,9(1). DOI: 10.1038/s41467-018-04568-z | [46] | Sainsbury N C, Genner M J, Saville G R , et al. Changing storminess and global capture fisheries[J]. Nature Climate Change, 2018. DOI: 10.1038/s41558-018-0206-x | [47] | Thomson J, Fan Y, Stammerjohn S , et al. Emerging trends in the sea state of the Beaufort and Chukchi seas[J]. Ocean Modelling, 2016,105:1-12 | [48] | Stopa J E, Ardhuin F, Girard-Ardhuin F . Wave climate in the Arctic 1992-2014: seasonality and trends[J]. The Cryosphere, 2016,10(4):1605-1629. DOI: 10.5194/tc-10-1605-2016 | [49] | Li X, Bellerby R, Craft C , et al. Coastal wetland loss, consequences, and challenges for restoration[J]. Anthropocene Coasts, 2018,1(3):1-15 | [50] | Bostrom A, Morss R, Demuth J , et al. Eyeing the storm: how residents of coastal Florida see hurricane forecasts and warnings[J]. International Journal of Disaster Risk Reduction, 2018: S221242091830219X | [51] | Boet-Whitaker S K . Buyouts as resiliency planning in New York city after Hurricane Sandy[M]. Cambridge: Massachusetts Institute of Technology, 2017 | [52] | Boet-Whitaker S . Resettlement in the wake of Typhoon Haiyan in the Philippines: a strategy to mitigate risk or a risky strategy? [R/OL]. 2015 [ 2019-10-10]. |
|