Climate Change Research ›› 2019, Vol. 15 ›› Issue (2): 119-129.doi: 10.12006/j.issn.1673-1719.2018.150

Previous Articles     Next Articles

Influence of sea surface temperature difference on the tropical cyclone genesis number in the Western North Pacific in August 1998 and August 2016

Ke FANG,Jin-Hua YU()   

  1. Key Laboratory of Meteorological Disasters, Ministry of Education/ Joint International Research Laboratory of Climate and Environment Change/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2018-10-31 Revised:2018-12-26 Online:2019-03-30 Published:2019-03-30

Abstract:

Based on the Hadley Center sea surface temperature data, NCEP/NCAR reanalysis data from 1970 to 2016 and numerical modeling simulation (ECHAM4), the possible effects of sea surface temperature anomalies (SSTA) in 1998 and 2016, which are the super El Ni?o attenuation years, on tropical cyclone (TC) formation and large-scale circulation in the Western North Pacific in August were studied. It is suggested that the SSTA, which was almost opposite in the tropical Indian Ocean and the Atlantic Ocean in 1998 and 2016, is one of the main reasons for the significant difference in the TC genesis number. Tropical and North Pacific SSTA can exert low pressure cyclonic circulation in the Pearl River Delta and south of Japan respectively in August 1998 and August 2016. The anomalous anti-cyclonic response of the tropical Indian Ocean and Atlantic SSTA in 1998 was stronger than the cyclonic anomaly generated by the Pacific SSTA. Therefore, the Western North Pacific Ocean is subject to anti-cyclonic circulation, which makes the TC genesis number less. In 2016, under the combined action of three oceans, the anomalous cyclone in the Western North Pacific led to more TC genesis number. The Pacific meridional mode structure forced an east-west overturning circulation anomaly in the subtropical North Pacific, and the response over the Western Pacific Ocean was opposite to that observed. Therefore, the Pacific meridional model has no positive contribution to the TC genesis number in the Western North Pacific.

Key words: Western North Pacific, Tropical cyclone genesis number (TCGN), Numerical model, Sea surface temperature anomaly (SSTA)

京ICP备11008704号-4
Copyright © Climate Change Research, All Rights Reserved.
Tel: (010)58995171 E-mail: accr@cma.gov.cn
Powered by Beijing Magtech Co. Ltd