[1] |
IPCC. Climate change 2021: the physical science basis[M/OL]. Cambridge: Cambridge University Press, 2021 [2021-10-27]. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/
|
[2] |
Golledge N R, Keller E D, Gomez N, et al. Global environmental consequences of twenty-first-century ice-sheet melt[J]. Nature, 2019, 566: 65-72. DOI: 10.1038/s41586-019-0889-9
doi: 10.1038/s41586-019-0889-9
URL
|
[3] |
Edwards T L, Nowicki S, Marzeion B, et al. Projected land ice contributions to twenty-first-century sea level rise[J]. Nature, 2021, 593: 74-82. DOI: 10.1038/s41586-021-03302-y
doi: 10.1038/s41586-021-03302-y
URL
|
[4] |
Bulthuis K, Arnst M, Sun S, et al. Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change[J]. The Cryosphere, 2019, 13: 1349-1380. DOI: 10.5194/tc-13-1349-2019
doi: 10.5194/tc-13-1349-2019
URL
|
[5] |
Huybrechts P, Payne A. The EISMINT benchmarks for testing ice-sheet models[J]. Annals of Glaciology, 1996, 23: 1-12
doi: 10.3189/S0260305500013197
URL
|
[6] |
Pattyn F, Perichon L, Aschwanden A, et al. Benchmark experiments for higher-order and full: Stokes ice sheet models (ISMIP-HOM)[J]. The Cryosphere, 2008, 2: 95-108. DOI: 10.5194/tc-2-95-2008
doi: 10.5194/tc-2-95-2008
URL
|
[7] |
Calov R, Greve R, Abe-Ouchi A, et al. Results from the Ice Sheet Model Intercomparison Project: Heinrich event intercomparison (ISMIP HEINO)[J]. Journal of Glaciology, 2010, 56 (197): 371-383
doi: 10.3189/002214310792447789
URL
|
[8] |
Pattyn F, Perichon L, Durand G, et al. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison[J]. Journal of Glaciology, 2013, 59 (215): 410-422. DOI: 10.3189/2013JoG12J129
doi: 10.3189/2013JoG12J129
URL
|
[9] |
Asay-Davis X S, Cornford S L, Durand G, et al. Experimental design for three interrelated marine Ice Sheet and Ocean Model Intercomparison Projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)[J]. Geoscientific Model Development, 2016, 9: 2471-2497. DOI: 10.5194/gmd-9-2471-2016
doi: 10.5194/gmd-9-2471-2016
URL
|
[10] |
Hoffman M J, Perego M, Price S F, et al. MPAS-Albany Land Ice (MALI): a variable resolution ice sheet model for Earth system modeling using Voronoi grids[J]. Geoscientific Model Development, 2018, 11: 3747-3780. DOI: 10.5194/gmd-11-3747-2018
doi: 10.5194/gmd-11-3747-2018
URL
|
[11] |
Fürst J, Durand G, Gillet-Chaulet F, et al. Assimilation of Antarctic velocity observations provides evidence for uncharted pinning points[J]. The Cryosphere, 2015, 9: 1427-1443. DOI: 10.5194/tc-9-1427-2015
doi: 10.5194/tc-9-1427-2015
URL
|
[12] |
Bueler E, Brown J. Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model[J]. Journal of Geophysical Research, 2009, 114: 1-21. DOI: 10.1029/2008JF001179
doi: 10.1029/2008JF001179
|
[13] |
Lipscomb W H, Price S F, Hoffman M J, et al. Description and evaluation of the Community Ice Sheet Model (CISM) v2.1[J]. Geoscientific Model Development, 2019, 12: 387-424. DOI: 10.5194/gmd-12-387-2019
doi: 10.5194/gmd-12-387-2019
|
[14] |
Greve R, SICOPOLIS Developer Team. SICOPOLIS V5.1: quick start manual[R/OL]. 2019 [2021-10-27]. https://zenodo.org/record/3727511#.Yk6XX8i0zwM
|
[15] |
de Boer B, Stocchi P, van de Wal R S W. A fully coupled 3-D ice-sheet-sea-level model, algorithm and applications[J]. Geoscientific Model Development, 2014, 7: 2141-2156. DOI: 10.5194/gmd-7-2141-2014
doi: 10.5194/gmd-7-2141-2014
URL
|
[16] |
Quiquet A, Dumas C, Ritz C, et al. The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet[J]. Geoscientific Model Development, 2018, 11: 5003-5025. DOI: 10.5194/gmd-11-5003-2018
doi: 10.5194/gmd-11-5003-2018
URL
|
[17] |
Sun B, Moore J C, Zwinger T, et al. How old is the ice beneath Dome A, Antarctica?[J]. The Cryosphere, 2014, 8: 1121-1128. DOI: 10.5194/tc-8-1121-2014
doi: 10.5194/tc-8-1121-2014
URL
|
[18] |
Zhao L, Moore J C, Sun B, et al. Where is the 1-million-year-old ice at Dome A?[J]. The Cryosphere, 2018, 12: 1651-1663
doi: 10.5194/tc-12-1651-2018
URL
|
[19] |
Guo X, Zhao L, GladStone R, et al. Simulated retreat of Jakobshavn Isbræ during the 21st century[J]. The Cryosphere, 2019, 13: 3139-3153
doi: 10.5194/tc-13-3139-2019
URL
|
[20] |
Tang X, Sun B, Guo J, et al. A Freeze-on ice zone along the Zhongshan-Kunlun Ice Sheet profile from a new ground-based ice-penetrating radar, East Antarctica[J]. Science Bulletin, 2015, 60 (5): 574-576
doi: 10.1007/s11434-015-0732-0
URL
|
[21] |
Zhang T, Price S, Ju L, et al. A comparison of two Stokes ice sheet models applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d)[J]. The Cryosphere, 2017, 11: 179-190. DOI: 10.5194/tc-11-179-2017
doi: 10.5194/tc-11-179-2017
URL
|
[22] |
Zhang T, Price S F, Hoffman M J, et al. Diagnosing the sensitivity of grounding-line flux to changes in sub-ice-shelf melting[J]. The Cryosphere, 2020, 14: 3407-3424. DOI: 10.5194/tc-14-3407-2020
doi: 10.5194/tc-14-3407-2020
URL
|
[23] |
Leng W, Ju L, Gunzburger M, et al. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments[J]. Journal of Geophysical Research, 2012, 117: F01001. DOI: 10.1029/2011JF001962
doi: 10.1029/2011JF001962
|
[24] |
Leng W, Ju L, Xie Y, et al. Finite element three-dimensional Stokes ice sheet dynamics model with enhanced local mass conservation[J]. Journal of Computational Physics, 2014, 274: 299-311
doi: 10.1016/j.jcp.2014.06.014
URL
|
[25] |
Seroussi H, Nowicki S, Simon E, et al. initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6[J]. The Cryosphere, 2019, 13: 1441-1471. DOI: 10.5194/tc-13-1441-2019
doi: 10.5194/tc-13-1441-2019
URL
|
[26] |
Goelzer H, Nowicki S, Edwards T, et al. Design and results of the ice sheet model initialization experiments initMIP-Greenland: an ISMIP6 intercomparison[J]. The Cryosphere, 2018, 12: 1433-1460. DOI: 10.5194/tc-12-1433-2018
doi: 10.5194/tc-12-1433-2018
URL
|
[27] |
Levermann A, Winkelmann R, Albrecht T, et al. Projecting Antarctica’s contribution to future sea level rise from basal ice-shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)[J]. Earth System Dynamics, 2020, 11: 35-76. DOI: 10.5194/esd-11-35-2020
doi: 10.5194/esd-11-35-2020
URL
|
[28] |
Levermann A, Winkelmann R, Nowicki S, et al. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models[J]. Earth System Dynamics, 2014, 5 (2): 271-293
doi: 10.5194/esd-5-271-2014
URL
|
[29] |
Sun S, Pattyn F, Simon E, et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP)[J]. Journal of Glaciology, 2020, 66 (260): 891-904. DOI: 10.1017/jog.2020.67
doi: 10.1017/jog.2020.67
URL
|
[30] |
Seroussi H, Nowicki S, Payne A J, et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century[J]. The Cryosphere, 2020, 14: 3033-3070. DOI: 10.5194/tc-14-3033-2020
doi: 10.5194/tc-14-3033-2020
URL
|
[31] |
李腾, 程晓, 刘岩, 等. CMIP6冰盖模式比较计划(ISMIP)概况与评述[J]. 气候变化研究进展, 2020, 16 (2):255-262.
|
|
Li T, Cheng X, Liu Y, et al. An overview of the Ice Sheet Model Intercomparison Project (ISMIP) in CMIP6[J]. Climate Change Research, 2020, 16 (2): 255-262 (in Chinese)
|
[32] |
Oppenheimer M, Glavovic B, Hinkel J, et al. Sea level rise and implications for low lying islands, coasts and communities[M/OL]// IPCC. IPCC special report on the ocean and cryosphere in a changing climate. 2019 [2021-10-27]. https://www.ipcc.ch/2019/09/23/b-roll-ipcc-srocc/
|
[33] |
DeConto R M, Pollard D, Alley R B, et al. The Paris Climate Agreement and future sea-level rise from Antarctica[J]. Nature, 2021, 593: 83-89. DOI: 10.1038/s41586-021-03427-0
doi: 10.1038/s41586-021-03427-0
URL
|