[1] |
Masiol M, Harrison R M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: a review[J]. Atmospheric Environment, 2014, 95: 409-455
doi: 10.1016/j.atmosenv.2014.05.070
pmid: 32288558
|
[2] |
彭天铎, 袁志逸, 任磊, 等. 中国碳中和目标下交通部门低碳发展路径研究[J]. 汽车工程学报, 2022, 12 (4): 351-359.
|
|
Peng T D, Yuan Z Y, Ren L, et al. Study on the low carbon development path of transportation sector under China’s carbon neutrality target[J]. Journal of Automotive Engineering, 2022, 12 (4): 351-359 (in Chinese)
|
[3] |
Wang K, Wang X, Cheng S, et al. National emissions inventory and future trends in greenhouse gases and other air pollutants from civil airports in China[J]. Environmental Science and Pollution Research, 2022, 29 (54): 81703-81712
|
[4] |
Lyu C, Liu X, Wang Z, et al. An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China[J]. Energy, 2023, 262: 125513
|
[5] |
Yu J, Shao C, Xue C, et al. China’s aircraft-related CO2 emissions: decomposition analysis, decoupling status, and future trends[J]. Energy Policy, 2020, 138: 111215
|
[6] |
Liu X, Hang Y, Wang Q, et al. Drivers of civil aviation carbon emission change: a two-stage efficiency-oriented decomposition approach[J]. Transportation Research Part D: Transport and Environment, 2020, 89: 102612
|
[7] |
Andreoni V, Galmarini S. European CO2 emission trends: a decomposition analysis for water and aviation transport sectors[J]. Energy, 2012, 45 (1): 595-602
|
[8] |
Zhou W, Wang T, Yu Y, et al. Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030[J]. Applied Energy, 2016, 175: 100-108
|
[9] |
袁志逸, 彭天铎, 任磊, 等. 基于机队视角的中国民航运输低碳发展情景分析[J]. 动力工程学报, 2022, 42 (11): 1068-1076.
doi: 10.19805/j.cnki.jcspe.2022.11.009
|
|
Yuan Z Y, Peng T D, Ren L, et al. Scenario analysis of low-carbon development of civil aviation transportation in China based on fleet perspective[J]. Journal of Power Engineering, 2022, 42 (11): 1068-1076 (in Chinese)
|
[10] |
李心怡, 赵瑞嘉, 高成男, 等. 中国民航运输碳排放解耦分析和达峰预测[J]. 环境污染与防治, 2022, 44 (6): 729-733, 739.
|
|
Li X Y, Zhao R J, Gao C N, et al. Decoupling analysis and peaking prediction of carbon emissions from civil aviation transportation in China[J]. Environmental Pollution and Prevention, 2022, 44 (6): 729-733, 739 (in Chinese)
|
[11] |
Liu X, Hang Y, Wang Q W, et al. Flying into the future: a scenario-based analysis of carbon emissions from China’s civil aviation[J]. Journal of Air Transport Management, 2020, 85: 101793
|
[12] |
胡荣, 王德芸, 冯慧琳, 等. 碳达峰视角下的机场航空器碳排放预测[J]. 交通运输系统工程与信息, 2021, 21 (6): 257-263.
|
|
Hu R, Wang D Y, Feng H L, et al. Carbon emission prediction of aircraft at airports under the perspective of carbon peaking[J]. Transportation Systems Engineering and Information, 2021, 21 (6): 257-263 (in Chinese)
|
[13] |
Dray L, Sch?fer A W, Grobler C, et al. Cost and emissions pathways towards net-zero climate impacts in aviation[J]. Nature Climate Change, 2022, 12 (10): 956-962
|
[14] |
G?ssling S, Humpe A, Fichert F, et al. COVID-19 and pathways to low-carbon air transport until 2050[J]. Environmental Research Letters, 2021, 16 (3): 034063
|
[15] |
Yang H, O’Connell J F. Short-term carbon emissions forecast for aviation industry in Shanghai[J]. Journal of Cleaner Production, 2020, 275: 122734
|
[16] |
Liu D, Xiao B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model[J]. Ecological Indicators, 2018, 93: 647-657
|
[17] |
Li L, Shi J, Liu H, et al. Simulation of carbon emission reduction in power construction projects using system dynamics: a Chinese empirical study[J]. Buildings, 2023, 13 (12): 3117
|
[18] |
Akbari F, Alireza M, Mohammad R A. Evaluation of energy consumption and CO2 emission reduction policies for urban transport with system dynamics approach[J]. Environmental Modeling & Assessment, 2020, 25: 505-520
|
[19] |
田利军, 徐森雨. 基于LMDI-Tapio模型的中国民航碳排放驱动因素与脱钩效应研究[J/OL]. 北京航空航天大学学报(社会科学版), 2024 [2024-06-11]. http://kns.cnki.net/kcms/detail/11.3979.C.20231211.1657.002.html.
|
|
Tian L J, Xu S Y. Study on the drivers and decoupling effects of carbon emissions of China’s civil aviation based on LMDI-Tapio model[J/OL]. Journal of Beijing University of Aeronautics and Astronautics (Social Science Edition), 2024 [2024-06-11]. http://kns.cnki.net/kcms/detail/11.3979.C.20231211.1657.002.html. (in Chinese)
|
[20] |
徐森雨. 中国民航碳排放驱动因素分解及脱碳路径研究[D]. 天津: 中国民航大学, 2024.
|
|
Xu S Y. Decomposition of carbon emission driving factors and decarbonization path of civil aviation in China[D]. Tianjin: Civil Aviation University of China, 2024 (in Chinese)
|
[21] |
International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection. Report on the feasibility of a long-term aspirational goal (LTAG) for international civil aviation CO2 emission reductions[EB/OL]. 2022 [2024-06-18]. https://www.icao.int/environmental-protection/LTAG/Documents/REPORT%20ON%20THE%20FEASIBILITY%20OF%20A%20LONG-TERM%20ASPIRATIONAL%20GOAL_ch.pdf
|
[22] |
NLR Royal Netherlands Aerospace Centre, SEO Amsterdam Economics. Destination 2050: a route to net zero European aviation[EB/OL]. 2021 [2024-06-18]. https://www.destination2050.eu/wp-content/uploads/2021/03/Destination2050_Report.pdf
|
[23] |
International Air Transport Association (IATA). Aircraft technology roadmap to 2050[EB/OL]. 2021 [2024-06-18]. https://www.eflight.com/wp-content/uploads/2021/05/Aviation-Technology-Roadmap-IATA-2050.pdf
|
[24] |
Air Transport Action Group. Waypoint 2050[EB/OL]. 2021 [2024-06-18]. https://aviationbenefits.org/media/167417/w2050_v2021_27sept_full.pdf
|
[25] |
中国民用航空局. 2022中国民航绿色发展政策与行动[EB/OL]. 2022 [2024-06-18]. https://www.gov.cn/xinwen/2022-09/25/5711791/files/de8b4158371b4a618522ce305287360a.pdf.
|
|
Civil Aviation Administration of China (CAAC). 2022 China civil aviation green development policies and actions[EB/OL]. 2022 [2024-06-18]. https://www.gov.cn/xinwen/2022-09/25/5711791/files/de8b4158371b4a618522ce305287360a.pdf (in Chinese)
|
[26] |
中国民用航空局. 十四五民用航空发展规划[EB/OL]. 2021 [2024-06-18]. https://www.gov.cn/zhengce/zhengceku/2022-01/07/5667003/files/d12ea75169374a15a742116f7082df85.pdf。
|
|
Civil Aviation Administration of China (CAAC). Civil aviation development plan for the 14th Five-Year Plan[EB/OL]. 2021 [2024-06-18]. https://www.gov.cn/zhengce/zhengceku/2022-01/07/5667003/files/d12ea75169374a15a742116f7082df85.pdf (in Chinese)
|
[27] |
中国民用航空局. 关于深入推进民航绿色发展的实施意见[EB/OL]. 2018 [2024-06-18]. https://www.gov.cn/zhengce/zhengceku/2018-12/31/content_5438087.htm。
|
|
Civil Aviation Administration of China (CAAC). Implementing opinions on deepening the green development of civil aviation[EB/OL]. 2018 [2024-06-18]. https://www.gov.cn/zhengce/zhengceku/2018-12/31/content_5438087.htm (in Chinese)
|
[28] |
中华人民共和国中央人民政府. 绿色航空制造业发展纲要(2023—2035年)[EB/OL]. 2023 [2024-06-18]. https://www.gov.cn/zhengce/zhengceku/202310/P020231010771078868473.pdf.
|
|
The State Council, the People’s Republic of China. Green aviation manufacturing development program (2023-2035)[EB/OL]. 2023 [2024-06-18]. https://www.gov.cn/zhengce/zhengceku/202310/P020231010771078868473.pdf (in Chinese)
|
[29] |
Nurhidayat A Y, Widyastuti H, Sutikno, et al. Research on passengers’ preferences and impact of high-speed rail on air transport demand[J]. Sustainability, 2023, 15 (4): 3060
|
[30] |
韩博, 邓志强, 于敬磊, 等. 碳达峰目标下中国民航CO2与NOx减排协同效益分析[J]. 交通运输系统工程与信息, 2022, 22 (4): 53-62.
|
|
Han B, Deng Z Q, Yu J L, et al. Analysis of the synergistic benefits of CO2 and NOx emission reduction in China’s civil aviation under the carbon peak target[J]. Transportation Systems Engineering and Information, 2022, 22 (4): 53-62 (in Chinese)
|
[31] |
许绩辉, 王克. 中国民航业中长期碳排放预测与技术减排潜力分析[J]. 中国环境科学, 2022, 42 (7): 3412-3424.
|
|
Xu J H, Wang K. Medium- and long-term carbon emission forecasts and analysis of technological reduction potential in China’s civil aviation industry[J]. China Environmental Science, 2022, 42 (7): 3412-3424 (in Chinese)
|