|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (3): 265-277.doi: 10.12006/j.issn.1673-1719.2023.286
• Changes in Climate System • Previous Articles Next Articles
CHEN Ting-Ting1,2, YU Wen-Jun1,2(), LI Yan-Zhong1,2, BAI Peng3, XING Yin-Cong1,2, HUANG Man-Jie1,2, SHAO Wei1,2
Received:
2023-12-28
Revised:
2024-02-21
Online:
2024-05-30
Published:
2024-05-08
CHEN Ting-Ting, YU Wen-Jun, LI Yan-Zhong, BAI Peng, XING Yin-Cong, HUANG Man-Jie, SHAO Wei. The spatiotemporal changes and risk analysis of apparent temperature in China from 1960 to 2019[J]. Climate Change Research, 2024, 20(3): 265-277.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.286
Fig. 5 The spatial distribution of AP and AT trends in different temporal scales from 1960 to 2019. (“×” represent where observed trends are significant (P<0.05))
Fig. 8 The proportion of annual high temperature risk area (a) and temporal variation of days (b) in typical climate regions of China from 1960 to 2019
Fig. 9 Spatial distribution of the trend of high temperature risk days in China from 1960 to 2019. (The white area indicates that there is no high temperature risk area)
Fig. 11 The change characteristics of AP before and after detrending. (AP represents the apparent temperature value before detrending. APdeT, APdeRH, and APdeU represent the apparent temperature values calculated by detrending air temperature, relative humidity, and wind speed, respectively)
Fig. 12 The spatial distribution of the relative contribution rates of the average air temperature (a-c), relative humidity (d-f), and wind speed (g-i) to AP in different timescales, respectively
[1] | Steadman R G. A universal scale of apparent temperature[J]. Journal of Applied Meteorology and Climatology, 1984, 23 (12): 1674-1687 |
[2] | Zhu X, Huang G, Zhou X, et al. Projection of apparent temperature using statistical downscaling approach in the Pearl River Delta[J]. Theoretical and Applied Climatology, 2021, 144: 1253-1266 |
[3] |
Camilo M, Bénédicte D, Iain R C, et al. Global risk of deadly heat[J]. Nature Climate Change, 2017, 7 (7): 501-506
doi: 10.1038/NCLIMATE3322 |
[4] | Hoang T L T, Dao H N, Cu P T, et al. Assessing heat index changes in the context of climate change: a case study of Hanoi (Vietnam)[J]. Frontiers in Earth Science, 2022, 10: 897601 |
[5] | Zhu J, Wang S, Huang G. Assessing climate change impacts on human-perceived temperature extremes and underlying uncertainties[J]. Journal of Geophysical Research: Atmospheres, 2019, 124 (7): 3800-3821 |
[6] | Li Q X, Sun W B, Yun X, et al. An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST[J]. Climate Dynamics, 2021, 56: 635-650 |
[7] | Fan X W, Duan Q Y, Shen C W, et al. Global surface air temperatures in CMIP6: historical performance and future changes[J]. Environmental Research Letters, 2020, 15 (10): 104056 |
[8] | Huang J Y, Li Q X, Song Z Y. Historical global land surface air apparent temperature and its future changes based on CMIP6 projections[J]. Science of The Total Environment, 2021, 816: 151656 |
[9] | Li Y, Gao Q J, You Q, et al. Intraseasonal oscillation features of the two types of persistent high temperature events over Jiangnan region[J]. Atmosphere, 2023, 14 (1): 185 |
[10] | Luo M, Lau N C. Heat waves in southern China: synoptic behavior, long-term change, and urbanization effects[J]. Journal of Climate, 2017, 30 (2): 703-720 |
[11] | Wajid N, Asad A, Shah F, et al. Future risk assessment by estimating historical heat wave trends with projected heat accumulation using simclim climate model in Pakistan[J]. Atmospheric Research, 2018, 205: 118-133 |
[12] |
黄晓军, 王博, 刘萌萌, 等. 中国城市高温特征及社会脆弱性评价[J]. 地理研究, 2020, 39 (7): 1534-1547.
doi: 10.11821/dlyj020190608 |
Huang X J, Wang B, Liu M M, et al. Characteristics of urban extreme heat and assessment of social vulnerability in China[J]. Geographical Research, 2020, 39 (7): 1534-1547 (in Chinese)
doi: 10.11821/dlyj020190608 |
|
[13] |
闫慧敏, 陈伟娜, 杨方兴, 等. 过去50年内蒙古极端气候事件时空格局特征[J]. 地理研究, 2014, 33 (1): 13-22.
doi: 10.11821/dlyj201401002 |
Yan H M, Chen W N, Yang F X, et al. The spatial and temporal analysis of extreme climatic events in Inner Mongolia during the past 50 years[J]. Geographical Research, 2014, 33 (1): 13-22 (in Chinese)
doi: 10.11821/dlyj201401002 |
|
[14] |
张蕾, 黄大鹏, 杨冰韵. RCP4.5情景下中国人口对高温暴露度预估研究[J]. 地理研究, 2016, 35 (12): 2238-2248.
doi: 10.11821/dlyj201612004 |
Zhang L, Huang D P, Yang B Y. Future population exposure to high temperature in China under RCP4.5 scenario[J]. Geographical Research. 2016, 35 (12): 2238-2248 (in Chinese)
doi: 10.11821/dlyj201612004 |
|
[15] | Zhou C, Zhang D, Cao Y, et al. Spatio-temporal evolution and factors of climate comfort for urban human settlements in the Guangdong-Hong Kong-Macau Greater Bay area[J]. Frontiers in Environmental Science, 2022, 10: 1001064 |
[16] | Zhang J T, Ren G Y, You Q L. Detection and projection of climatic comfort changes in China’s Mainland in a warming world[J]. Advances in Climate Change Research, 2022, 13 (4): 507-516 |
[17] | Zhang D, Zhou C, Zhou Y, et al. Spatiotemporal relationship characteristic of climate comfort of urban human settlement environment and population density in China[J]. Meta-Scenario Computation for Social-Geographical Sustainability, 2023, 16648714: 269 |
[18] | Zhang Y, Xiao F, Mei H, et al. Comprehensive analysis of climate-related comfort in southern China: climatology, trend, and interannual variations[J]. Urban Climate, 2022, 46: 101349 |
[19] | 杨文婷, 王汶. 基于体感温度的中国户外高温风险分布研究[J]. 气候与环境研究, 2021, 26 (6): 637-647. |
Yang W T, Wang W. Apparent temperature-based outdoor heat-risk distribution in China[J]. Climatic and Environmental Research, 2021, 26 (6): 637-647 (in Chinese) | |
[20] | 孟长青, 刘柯莹, 钟德钰, 等. 高相对湿度对热浪及寒潮事件的放大效应评估: 以嘉陵江流域为例[J]. 水力发电学报, 2023, 42 (4): 11-24. |
Meng C Q, Liu K Y, Zhong D Y, et al. Evaluation of amplification effect of high relative humidity on heat wave and cold wave events: a case study of Jialing River basin[J]. Journal of Hydroelectric Power, 2023, 42 (4): 11-24 (in Chinese) | |
[21] |
李卓群, 刘星才. 1961—2019年辽宁省高温天气变化特征[J]. 应用生态学报, 2021, 32 (11): 4059-4067.
doi: 10.13287/j.1001-9332.202111.038 |
Li Z Q, Liu X C. Characteristics of high temperature weather changes in Liaoning province from 1961 to 2019[J]. Journal of Applied Ecology, 2021, 32 (11): 4059-4067 (in Chinese) | |
[22] | Wu J, Gao X J, Filippo G, et al. Changes of effective temperature and cold/hot days in late 10as over China based on a high resolution gridded observation dataset[J]. International Journal of Climatology, 2017, 37: 788-800 |
[23] | Li J, Chen Y D, Gan T Y, et al. Elevated increases in human-perceived temperature under climate warming[J]. Nature Climate Change, 2018, 8 (1): 43-47 |
[24] | Li W, Hao X, Wang L, et al. Detection and attribution of changes in thermal discomfort over China during 1961-2014 and future projections[J]. Advances in Atmospheric Sciences, 2022, 39 (3): 456-470 |
[25] | Wang Y J, Chen L T, Song Z Y, et al. Human-perceived temperature changes over South China: long-term trends and urbanization effects[J]. Atmospheric Research, 2018, 215: 116-127 |
[26] |
Yan Y, Yue S, Hui C, et al. Advances on assessment of bioclimatic comfort conditions at home and abroad[J]. Advances in Earth Science, 2013, 28: 1119-1125
doi: 10.11867/j.issn.1001-8166.2013.10.1119 |
[27] | Ma P, Wang S G, Shang K Z, et al. The impact of meteorological comfort conditions on respiratory disease[J]. China Environmental Science, 2018, 38: 374-382 |
[28] | Yang J J. The comprehensive evaluation of suitability of summer tourism base in China[J]. Resources Science, 2016, 38: 11-16 |
[29] | Fischer E M, Knutti R. Robust projections of combined humidity and temperature extremes[J]. Nature Climate Change, 2013, 3 (2): 126-130 |
[30] |
Mora C, Dousset B, Caldwell L, et al. Global risk of deadly heat[J]. Nature Climate Change, 2017, 7 (7): 501-506
doi: 10.1038/NCLIMATE3322 |
[31] | Robinson S, Turrell E S, Gerking S D. Physiological equivalent conditions of air temperature and humidity[J]. American Journal of Physiology-Legacy Content, 1945, 143 (1): 21-32 |
[32] | Akimovich N N, Balalla O A. Sultry weathers at the south of Primorye and their influence on human body[J]. Izvestia ASc USSR Geogr, 1971, 4: 94-100 |
[33] | Rohles Jr F H, Nevins R G. The nature of thermal comfort for sedentary man[J]. ASHRAE Transactions, 1971, 77 (1): 239-246 |
[34] | Weiss M. The humisery and other measures of summer discomfort[J]. National Weather Digest, 1982, 7 (2): 10-18 |
[35] |
Jendritzky G de Dear R, Havenith G. UTCI-Why another thermal index?[J]. International Journal of Biometeorology, 2012, 56 (3): 421-428
doi: 10.1007/s00484-011-0513-7 pmid: 22187087 |
[36] | Sheridan S C. The redevelopment of a weather-type classification scheme for North America[J]. International Journal of Climatology, 2002, 22 (1): 51-68 |
[37] | 中国气象局. 中华人民共和国气象行业标准QX/T 500—2019: 避暑旅游气候适宜度评定方法[J]. 北京: 气象出版社, 2019. |
China Meteorological Administration. The meteorological industry standard of the People’s Republic of China QX/T 500-2019: evaluation method for climate suitability for summer tourism[J]. Beijing: China Meteorological Press, 2019 (in Chinese) | |
[38] | 毛飞, 孙涵, 杨红龙. 干湿气候区划研究进展[J]. 地理科学进展, 2011, 30 (1): 17-26. |
Mao F, Sun H, Yang H L. Research progress in dry/wet climate zoning[J]. Progress in Geographic Science, 2011, 30 (1): 17-26 (in Chinese) | |
[39] |
彭振华, 李艳忠, 余文君, 等. 遥感降水产品在中国不同气候区的适用性研究[J]. 地球信息科学学报, 2021, 23 (7): 1296-1311.
doi: 10.12082/dqxxkx.2021.200348 |
Peng Z H, Li Y Z, Yu W J, et al. Study on the applicability of remote sensing precipitation products in different climate regions of China[J]. Journal of Earth Information Science, 2021, 23 (7): 1296-1311 (in Chinese) | |
[40] | 刘志红, Tim R, Van N, 等. 专用气候数据空间插值软件ANUSPLIN及其应用[J]. 气象, 2008 (2): 92-100. |
Liu Z H, Tim R, Van N, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLINN[J]. Meteorology, 2008 (2): 92-100 (in Chinese) | |
[41] |
谭剑波, 李爱农, 雷光斌. 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 2016, 35 (4): 875-886.
doi: 10.7522/j.issn.1000-0534.2015.00037 |
Tan J B, Li A N, Lei G B. Comparative analysis of Anusplin and Cokriging spatial interpolation of meteorological elements in the southeastern margin of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016, 35 (4): 875-886 (in Chinese) | |
[42] | 钱永兰, 吕厚荃, 张艳红. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J]. 气象与环境学报, 2010, 26 (2): 7-15. |
Qian Y L, Lyu H Q, Zhang Y H. Application and evaluation of daily meteorological element interpolation method based on ANUSPLIN software[J]. Journal of Meteorology and Environment, 2010, 26 (2): 7-15 (in Chinese) | |
[43] | Bai P. Comparison of remote sensing evapotranspiration models: consistency, merits, and pitfalls[J]. Hydrology, 2023, 617: 128856 |
[44] | Li Y Z, Zhuang J C, Bai P, et al. Evaluation of three long-term remotely sensed precipitation estimates for meteorological drought monitoring over China[J]. Remote Sensing, 2022, 15, 86: 1-19 |
[45] | Yang Z, Bai P, Li Y. Quantifying the effect of vegetation greening on evapotranspiration and its components on the Loess Plateau[J]. Hydrology, 2022, 613: 128446 |
[46] | Bai P, Liu X, Zhang Y, et al. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China[J]. Water Resource Research, 2020, 56 |
[47] | 庄稼成, 星寅聪, 李艳忠, 等. 基于改进ABCD模型的黄河源区径流变化与归因[J]. 南水北调与水利科技(中英文), 2022, 20 (5): 953-965. |
Zhuang J C, Xing Y C, Li Y Z, et al. Attribution analysis of runoff change based on the ABCD model coupled with the snowmelt module in the source region of the Yellow River[J]. South to North Water Diversion and Water Conservancy Technology (Chinese and English), 2022, 20 (5): 953-965 (in Chinese) | |
[48] | 江振蓝, 荆长伟, 李丹, 等. 运用Mann-Kendall方法探究地表植被变化趋势及其对地形因子的响应机制: 以太湖苕溪流域为例[J]. 浙江大学学报(农业与生命科学版), 2011, 37 (6): 684-692. |
Jiang Z L, Jing C W, Li D, et al. Dynamics of vegetation and its responses to terrain factors with Mann-Kendall approach: a case study in Tiao xi watershed, Tai Hu lake[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2011, 37 (6): 684-692 (in Chinese) | |
[49] | 张建云, 章四龙, 王金星, 等. 近50年来中国六大流域年际径流变化趋势研究[J]. 水科学进展, 2007 (2): 230-234. |
Zhang J Y, Zhang S L, Wang J X, et al. Study on runoff trends of the six larger basins in China over the past 50 years[J]. Progress in Water Science, 2007 (2): 230-234 (in Chinese) | |
[50] | Sivapragasam C, Natarajan N. Comparison of trends in apparent and air temperature for climate change assessment[J]. Modeling Earth Systems and Environment, 2021, 7: 261-271 |
[51] |
Yoram E, Daniel S. Thermal comfort and the heat stress indices[J]. Industrial Health, 2006, 44 (3): 388-398
doi: 10.2486/indhealth.44.388 pmid: 16922182 |
[52] | Zhu J X, Huang G D, Wang X Q, et al. Investigation of changes in extreme temperature and humidity over China through a dynamical downscaling approach[J]. Earth’s Future, 2017, 5 (11): 1136-1155 |
[53] | Wang S, Zhu J X. Amplified or exaggerated changes in perceived temperature extremes under global warming[J]. Climate Dynamics: Observational, Theoretical and Computational Research on the Climate System, 2020, 54 (7): 117-127 |
[54] | Wang Z, Zhang A, Liu M. Daily spatial distribution of apparent temperature comfort zone in China based on heat index[J]. Remote Sensing, 2022, 14 (19): 4999 |
[55] | Jin J, Xu Z, Cao R, et al. Long-term apparent temperature, extreme temperature exposure, and depressive symptoms: a longitudinal study in China[J]. International Journal of Environmental Research and Public Health, 2023, 20 (4): 3229 |
[1] | MA Li-Juan, YUAN Jia-Shuang, HUANG Lei. Prospect of climate risks management in China under the framework of UN Early Warning for All Initiative [J]. Climate Change Research, 2024, 20(1): 48-61. |
[2] | DONG Hong-Jie, DONG Wen-Jie, CAO Ying-Chun, ZHANG Yi-Fan. Inundation risk assessment of historical relics in Henan province under rainstorm scenarios based on SCS-CN model [J]. Climate Change Research, 2023, 19(6): 738-748. |
[3] | ZHANG Xi, CHEN Min-Peng. Adaptation and green recovery: synergistic responses to the COVID-19 pandemic and climate compounding risks [J]. Climate Change Research, 2022, 18(6): 720-730. |
[4] | HU Yi-Lun, JI Guo-Xu, LI Ji-Hong, HASBAGAN Ganjurjav, HU Guo-Zheng, GAO Qing-Zhu. Interpretation of IPCC AR6: terrestrial and freshwater ecosystems and their services [J]. Climate Change Research, 2022, 18(4): 395-404. |
[5] | WANG Lei, ZHANG Bai-Chao, SHI Ying, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on the impacts and risks of climate change [J]. Climate Change Research, 2022, 18(4): 389-394. |
[6] | HUANG Cunrui, LIU Qiyong. Interpretation of IPCC AR6 on climate change and human health [J]. Climate Change Research, 2022, 18(4): 442-451. |
[7] | LI Tao, TAO Hui, CHEN Jin-Yu. Risk assessment of extreme low temperature events over the China-Pakistan Economic Corridor [J]. Climate Change Research, 2022, 18(3): 343-354. |
[8] | WANG Xia, WANG Ying, LIN Qi-Gen, LI Ning, ZHANG Xin-Ren, ZHOU Xiao-Ying. Projection of China landslide disasters population risk under climate change [J]. Climate Change Research, 2022, 18(2): 166-176. |
[9] | MA Zheng, WANG Guo-Fu, ZHANG Ying-Xian. The risk regionalization of regional continuity rainstorm processes in China during 1961-2019 [J]. Climate Change Research, 2022, 18(2): 142-153. |
[10] | WU Zhan-Yun. Integrating adaptation to climate change into territorial spatial planning: progress, dilemma and strategy [J]. Climate Change Research, 2021, 17(5): 559-569. |
[11] | WANG Peng-Ling,HUANG Lei,CHAO Qing-Chen,YUAN Jia-Shuang,CHEN Chao. The main content and insights of IPCC special report on the ocean and cryosphere in a changing climate (SROCC) [J]. Climate Change Research, 2020, 16(2): 133-142. |
[12] | CAI Rong-Shuo,TAN Hong-Jian. Impacts and risks of accelerating sea level rise on low lying islands, coasts and communities [J]. Climate Change Research, 2020, 16(2): 163-171. |
[13] | CAI Rong-Shuo,HAN Zhi-Qiang,YANG Zheng-Xian. Impacts and risks of changing ocean on marine ecosystems and dependent communities and related responses [J]. Climate Change Research, 2020, 16(2): 182-193. |
[14] | YU Rong,ZHAI Pan-Mao. Ocean and cryosphere change related extreme events, abrupt change and its impact and risk [J]. Climate Change Research, 2020, 16(2): 194-202. |
[15] | Yu-Jie TAO,Meng-Yu LI,Mao-Sheng DUAN. Development of market mechanisms under the Paris Agreement: risks and countermeasures [J]. Climate Change Research, 2020, 16(1): 117-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|