|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (3): 304-315.doi: 10.12006/j.issn.1673-1719.2023.248
• Impacts of Climate Change • Previous Articles Next Articles
MA An-Jing1(), ZHANG Ming-Li1,2(), ZHOU Zhi-Xiong1, WANG Yong-Bin1, WANG Cheng-Fu1
Received:
2023-11-14
Revised:
2024-01-10
Online:
2024-05-30
Published:
2024-05-08
MA An-Jing, ZHANG Ming-Li, ZHOU Zhi-Xiong, WANG Yong-Bin, WANG Cheng-Fu. Effect of near-surface water vapor density on surface radiation in permafrost regions: a case study in Beiluhe area, Qinghai province, China[J]. Climate Change Research, 2024, 20(3): 304-315.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2023.248
Fig. 1 Geographical location of the national observation and research station for permafrost engineering and environment at Beiluhe, Qinghai province on the interior Qinghai-Tibet Plateau, Southwest China
Fig. 4 The influence of relative humidity at the height of 2 m on land surface radiation flux at Beiluhe station during the period from 1st December 2012 to 30th November 2013
Fig. 5 Variations of relative humidity at the height of 2 m and land surface albedo at the Beiluhe station during the period of December 2012 to November 2013
Fig. 6 Variations in rainfall and soil moisture content at different depths in the active layer in the Beiluhe permafrost station in summer (June to August) 2013
Fig. 7 Variations in atmospheric relative humidity at the height of 2 m and land surface albedo in the Beiluhe permafrost station after summer rainfall in 2013
[1] | Qiu J. China: the third pole[J]. Nature, 2008, 454 (7203): 393-397. DOI: 10.1038/454393 |
[2] | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021: 3949. DOI: 10.1256/004316502320517344 |
[3] | Ombadi M, Risser M D, Rhosdes A M, et al. A warming-induced reduction in snow fraction amplifies rainfall extremes[J]. Nature, 2023, 619 (7969): 305-310. DOI: 10.1038/s41586-023-06092-7 |
[4] |
许建伟, 高艳红, 彭保发, 等. 1979—2016年青藏高原降水的变化特征及成因分析[J]. 高原气象, 2020, 39 (2): 234-244.
doi: 10.7522/j.issn.1000-0534.2019.00029 |
Xu J W, Gao Y H, Peng B F, et al. Change characteristics of precipitation and its cause during 1979-2016 over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2020, 39 (2): 234-244 (in Chinese) | |
[5] |
刘娜, 熊安元, 张强, 等. 青藏高原多源气象辐射数据整合与评估[J]. 高原气象, 2023, 42 (1): 35-48.
doi: 10.7522/j.issn.1000-0534.2022.00012 |
Liu N, Xiong A Y, Zhang Q, et al. Integration and evaluation of multi-source meteorological radiation data over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2023, 42 (1): 35-48 (in Chinese)
doi: 10.7522/j.issn.1000-0534.2022.00012 |
|
[6] | Kang S, Xu Y, You Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environment Research Letters, 2010, 5 (1): 015101. DOI: 10.1088/1748-9326/5/1/015101 |
[7] | 强耀辉, 王坤鑫, 马宁, 等. 羌塘高原申扎高寒湿地辐射平衡和地表反照率特征[J]. 干旱区研究, 2021, 38 (5): 1207-1215. |
Qiang Y H, Wang K X, Ma N, et al. Characteristics of the radiation balance and surface albedo of a typical alpine wetland in Qiangtang Plateau[J]. Arid Zone Research, 2021, 38 (5): 1207-1215 (in Chinese) | |
[8] |
杨成, 姚济敏, 赵林, 等. 藏北高原多年冻土区地表反照率时空变化特征[J]. 冰川冻土, 2016, 38 (6): 1518-1528.
doi: 10.7522/j.issn.1000-0240.2016.0177 |
Yang C, Yao J M, Zhao L, et al. Temporal and spatial variation characteristics of surface albedo in permafrost region of northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38 (6): 1518-1528 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2016.0177 |
|
[9] | Pang G, Chen D, Wang X, et al. Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau[J]. Science of the Total Environment, 2022, 804: 150100. DOI: 10.1016/j.scitotenv.2021.150100 |
[10] | 周万福, 周秉荣, 李晓东, 等. 青藏高原东部地区辐射平衡及各分量变化特征[J]. 高原气象, 2013, 32 (2): 2327-2333. |
Zhou W F, Zhou B R, Li X D, et al. Variation characteristics of radiation budget and its component in the eastern Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2013, 32 (2): 2327-2333 (in Chinese) | |
[11] | 赵之重, 赵凯, 徐剑波, 等. 三江源地表反照率时空变化及其与气候因子的关系[J]. 干旱区研究, 2014, 31 (6): 1031-1038. |
Zhao Z Z, Zhao K, Xu J B, et al. Spatial-temporal changes of surface albedo and its relationship with climate[J]. Factors in the Source of Three Rivers Region, 2014, 31 (6): 1031-1038 (in Chinese) | |
[12] |
张明礼, 王斌, 王得楷, 等. 降雨对青藏高原多年冻土区地表辐射的影响: 以北麓河地区为例[J]. 冰川冻土, 2021, 43 (4): 1092-1101.
doi: 10.7522/j.issn.1000-0240.2021.0073 |
Zhang M L, Wang B, Wang D K, et al. The effects of rainfall on the surface radiation of permafrost regions in Qinghai-Tibet Plateau: a case study in Beiluhe area[J]. Journal of Glaciology and Geocryology, 2021, 43 (4): 1092-1101 (in Chinese) | |
[13] | Puschel R F, Charles J G, Hansen R T. Solar radiation: effect of atmospheric water vapor and volcanic aerosols[J]. Journal of Applied Meteorology and Climatology, 1974, 13 (3): 397-401 |
[14] | Maghrabi A H, Almutayri M M, Aldosary A F, et al. The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions[J]. Theoretical and Applied Climatology, 2019, 138: 1375-1394. DOI: 10.1007/s00704-019-02903-y |
[15] | 沈元芳, 黄丽萍, 徐国强, 等. 长波辐射对大气变化的敏感性和在WRF模式中的应用检验[J]. 气象学报, 2004 (2): 213-227. |
Shen Y F, Huang L P, Xu G Q, et al. The sensitivity of longwave radiation to atmospheric changes and the simulation in the weather research and forecast (WRF) model[J]. Acta Meteorologica Sinica, 2004 (2): 213-227 (in Chinese) | |
[16] | 李秀镇, 盛立芳, 刘骞, 等. 基于SBDART辐射传输模式的晴天地面总辐射模拟误差分析[J]. 中国海洋大学学报 (自然科学版), 2016, 46 (8): 13-18. |
Li X Z, Sheng L F, Liu Q, et al. Error in calculation of surface radiation based on SBDART radiative transfer model[J]. Periodical of Ocean University of China, 2016, 46 (8): 13-18 (in Chinese) | |
[17] | 徐可飘. 青藏高原大气水汽含量及水汽输送特征研究[D]. 合肥: 中国科学技术大学, 2021: 25-35. |
Xu K P. A study on the characteristics of water vapor content and water vapor transport of the Tibetan Plateau[D]. Hefei: University of Science and Technology of China, 2021: 25-35 (in Chinese) | |
[18] | 梁宏. 青藏高原大气水汽变化和对辐射影响的模拟[D]. 北京: 中国气象科学研究院, 2012: 153-154. |
Liang H. Variation of the atmospheric water vapor and its radiative effect simulations over the Tibetan Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2012: 153-154 (in Chinese) | |
[19] | Lu N, Qin J, Gao Y, et al. Trends and variability in atmospheric precipitable water over the Tibetan Plateau for 2009-2010[J]. International Journal of Climatology, 2015, 35 (7): 1394-1404. DOI: 10.1002/joc.4064 |
[20] | 张明礼, 温智, 薛珂, 等. 北麓河地区多年冻土地表能量收支分析[J]. 干旱区资源与环境, 2016, 30 (9): 134-138. |
Zhang M L, Wen Z, Xue K, et al. Surface energy budget analysis in permafrost region of Beiluhe area[J]. Journal of Arid Land Resources and Environment, 2016, 30 (9): 134-138 (in Chinese) | |
[21] | 张明礼, 温智, 薛珂, 等. 北麓河多年冻土活动层水热迁移规律分析[J]. 干旱区资源与环境, 2015, 29 (9): 176-181. |
Zhang M L, Wen Z, Xue K, et al. Soil moisture-heat migration characteristics within the permafrost active layer in Beiluhe[J]. Journal of Arid Land Resources and Environment, 2015, 29 (9): 176-181 (in Chinese) | |
[22] | 张明礼, 雷兵兵, 周志雄, 等. 考虑雨水感热的降雨对多年冻土水热变化影响模型研究[J]. 岩土力学, 2023, 44 (5): 1530-1544. |
Zhang M L, Lei B B, Zhou Z X, et al. Model study on rainfall effect on hydrothermal dynamics of permafrost considering rainwater sensible heat[J]. Rock and Soil Mechanics, 2023, 44 (5): 1530-1544 (in Chinese) | |
[23] | Tahooni A, Kakroodi A A, Kiavarz M. Monitoring of land surface albedo and its impact on land surface temperature (LST) using time series of remote sensing data[J]. Ecological Informatics, 2023, 75: 102118. DOI: 10.1016/j.ecoinf.2023.102118 |
[24] | 盛裴轩. 大气物理学[M]. 北京: 北京大学出版社, 2013: 94-95. |
Sheng P X. Atmospheric physics[M]. Beijing: Peking University Press, 2013: 94-95 (in Chinese) | |
[25] |
周志雄, 周凤玺, 张明礼, 等. 季节降雨特征对青藏高原中部冻土活动层的水热影响[J]. 高原气象, 2023, 42 (5): 1172-1181.
doi: 10.7522/j.issn.1000-0534.2023.00017 |
Zhou Z X, Zhou F X, Zhang M L, et al. Effects of seasonal rainfall characteristics on the hydrothermal state of permafrost active layer in the central Qinghai-Xizang (Tibet) Plateau[J]. Plateau Meteorology, 2023, 42 (5): 1172-1181 (in Chinese) | |
[26] | 张明礼, 温智, 薛珂, 等. 降水对北麓河地区多年冻土活动层水热影响分析[J]. 干旱区资源与环境, 2016, 30 (4): 159-164. |
Zhang M L, Wen Z, Xue K, et al. The effects of precipitation on thermal-moisture dynamics of the active layer at Beiluhe permafrost region[J]. Journal of Arid Land Resources and Environment, 2016, 30 (4): 159-164 (in Chinese) | |
[27] | Leckner B. The spectral distribution of solar radiation at the Earth’s surface elements of a model[J]. Solar Energy, 20 (2): 143-150. DOI: 10.1016/0038-092X(78)90187-1 |
[28] | Lobell D B, Asner G P. Moisture effects on soil reflectance[J]. Soil Science Society of America Journal, 2002, 66 (3): 722-727. DOI: 10.2136/sssaj2002.7220 |
[29] | Desyatkin A, Fedorov P, Filippov N, et al. Climate change and its influence on the active layer depth in Central Yakutia[J]. Land, 2021, 10: 3. DOI: 10.3390/land10010003 |
[30] | Smith S L, O’Neill H B, Isaksen K, et al. The changing thermal state of permafrost[J]. Nature Reviews Earth & Environment, 2022, 3 (1): 10-23. DOI: 10.1038/s43017-021-00240-1 |
[31] | 王闯, 戴长雷, 宋成杰. 青藏高原气候变化的时空分布特征分析[J]. 人民黄河, 2022, 44 (9): 76-82. |
Wang C, Dai C L, Song C J. Analysis of the temporal and spatial distribution characteristics of climate change in the Qinghai-Tibetan Plateau[J]. Yellow River, 2022, 44 (9): 76-82 (in Chinese) | |
[32] | 俞静雯, 李清泉, 丁一汇, 等. 气候变暖背景下青藏高原夏季水汽的长期变化趋势分析[J]. 中国科学: 地球科学, 2022, 52 (5): 942-954. |
Yu J W, Li Q Q, Ding Y H, et al. Long-term trend of water vapor over the Tibetan Plateau in boreal summer under global warming[J]. Science China Earth Sciences, 2022, 52 (5): 942-954 (in Chinese) | |
[33] |
罗栋梁, 金会军, 吴青柏, 等. 天然状态下多年冻土区活动层厚度研究进展与展望[J]. 冰川冻土, 2023, 45 (2): 558-574.
doi: 10.7522/j.issn.1000-0240.2023.0043 |
Luo D L, Jin H J, Wu Q B, et al. Active layer thickness (ALT) in permafrost regions under natural/undisturbed state: a review[J]. Journal of Glaciology and Geocryology, 2023, 45 (2): 558-574 (in Chinese) | |
[34] | S?dergren A H, McDonald A J, Bodeker G E. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover, and water vapor on polar amplification[J]. Climate Dynamics, 2018, 51: 1639-1658. DOI: 10.1007/s00382-017-3974-5 |
[35] | Eltahir A B. A soil moisture-rainfall feedback mechanism: 1. Theory and observations[J]. Water Resources Research, 1998, 34 (4): 765-776. DOI: 10.1029/97WR03499 |
[36] | Chen C, Tian L, Zhu L, et al. The impact of climate change on the surface albedo over the Qinghai-Tibet Plateau[J]. Remote Sensing, 2021, 13 (12): 2336. DOI: 10.3390/rs13122336 |
[37] | Feldl N, Merlis T M. A semi-analytical model for water vapor, temperature, and surface-albedo feedbacks in comprehensive climate models[J]. Geophysical Research Letters, 2023, 50 (21): e2023GL105796. DOI: 10.1029/2023GL105796 |
[38] | Xiong J, Yong Z, Wang Z, et al. Spatial and temporal patterns of the extreme precipitation across the Tibetan Plateau[J]. Water, 2019, 11: 1453. DOI: 10.3390/w11071453 |
[39] | Zhang M, Wen Z, Li D, et al. Impact process and mechanism of summertime rainfall on thermal-moisture regime of the active layer in permafrost regions of central Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2021, 796: 148970. DOI: 10.1016/j.scitotenv.2021.148970 |
[40] | Zhou Z, Zhou F, Zhang M, et al. Effects of seasonal rainfall variations on the hydrothermal state and thermal stability of the permafrost active layer in the central Qinghai-Tibet Plateau of China[J]. Cold Regions Science and Technology, 2023, 214: 103945. DOI: 10.1016/j.coldregions.2023.103945 |
[1] | WANG Jiao-Jiao, ZHANG Hu, JIN Xiao-Ying, HUANG Shuai, WANG Hong-Wei, WANG Wen-Hui, ZHAN Tao, ZHOU Gang-Yi, CHE Fu-Qiang, LI Yan, LI Xin-Yu, HE Rui-Xia, ZHANG Ze, ZHANG Sheng-Rong, LI Guo-Yu, TONG Chang-Jiang, WANG Xun, JIN Hui-Jun. Influences of gravel refilling on temperature fields of runway foundation soils in permafrost regions under a warming climate: a case study of the Mohe airport, northern Heilongjiang province, Northeast China [J]. Climate Change Research, 2024, 20(3): 291-303. |
[2] | LUAN Lan, ZHAI Pan-Mao. Changes in rainy season precipitation properties over the Qinghai-Tibet Plateau based on multi-source datasets [J]. Climate Change Research, 2023, 19(2): 173-190. |
[3] | MA Li-Juan, XIAO Cun-De, KANG Shi-Chang. Characteristics, and similarities and differences of climate change in major high mountains in the world—comprehensive interpretation of IPCC AR6 WGI report and SROCC [J]. Climate Change Research, 2022, 18(5): 605-621. |
[4] | WAN Zi-Wen, WANG Wei, LYU Heng, QIU Pei-Yu, LI Yu-Zhu, LU Yang. Comparison between CMIP6 and CMIP5 models in simulating historical spatiotemporal variations in radiation budgets at the top of atmosphere and the surface [J]. Climate Change Research, 2022, 18(4): 468-481. |
[5] | CAO Long. Climate system response to solar radiation modification [J]. Climate Change Research, 2021, 17(6): 671-684. |
[6] | LIU Yuan-Yuan, HU Qi, HE Hua-Yun, LI Rong, PAN Xue-Biao, HUANG Bin-Xiang. Estimation of total surface solar radiation at different time scales in China [J]. Climate Change Research, 2021, 17(2): 175-183. |
[7] | LI Xiao-Ying, JIN Hui-Jun, HE Rui-Xia, HUANG Ya-Dong. Effects of forest fires on ecological service in permafrost regions [J]. Climate Change Research, 2020, 16(5): 545-554. |
[8] | LI Lin, SHEN Hong-Yan, LIU Cai-Hong, XIAO Rui-Xiang. Response of water level fluctuation to climate warming and wetting scenarios and its mechanism on Qinghai Lake [J]. Climate Change Research, 2020, 16(5): 600-608. |
[9] | Long CAO. Short commentary on CMIP6 Geoengineering Model Intercomparison Project (GeoMIP) [J]. Climate Change Research, 2019, 15(5): 487-492. |
[10] | Yi-Ping FANG,Fu-Biao ZHU,Shu-Hua YI,Xiao-Ping QIU,Yong-Jian DING. Contribution of permafrost to grassland ecological carrying capacity in the Qinghai-Tibetan Plateau [J]. Climate Change Research, 2019, 15(2): 150-157. |
[11] | Zuo-Long WEN,Jiu JIANG,Long CAO. Simulated effects of solar geoengineering on ocean acidification [J]. Climate Change Research, 2019, 15(1): 41-53. |
[12] | Yang CUI, Zheng-Hong CHEN. Research progresses of the impacts of photovoltaic power plants on local climate [J]. Climate Change Research, 2018, 14(6): 593-601. |
[13] | Kong Ying, Wang Chenghai. Responses and Changes in the Permafrost and Snow Water Equivalent in the Northern Hemisphere Under A Scenario of 1.5℃ Warming [J]. Climate Change Research, 2017, 13(4): 316-326. |
[14] | Liu Wei, Cao Long. Climate Response to Carbon Dioxide Forcing and Solar Radiation Forcing on Different Time Scales [J]. Climate Change Research, 2017, 13(3): 231-242. |
[15] | Zhang Ying, Chen Ying, Pan Jiahua . Key Issues in Climate Engineering Economic Assessment and Governance [J]. Climate Change Research, 2016, 12(5): 442-449. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|