[1] |
Singh S, Gupta A R, Kumar A. Impact of wind generation participation on congested power system[M]. Singapore: Springer Nature Singapore, 2022
|
[2] |
Ismail M, Bendary A, Elsisi M. Optimal design of battery charge management controller for hybrid system PV/wind cell with storage battery[J]. International Journal of Power and Energy Conversion, 2020. DOI: 10.1504/IJPEC.2020.110018
|
[3] |
Kumar A, Kewat S, Singh B, et al. An integration of solar photovoltaic generation to three-phase utility using adaptive control algorithm[J]. Journal of the Institution of Engineers (India): Series B, 2020, 101 (35): 43-54
|
[4] |
Slootweg J G, Kling W L. The impact of large scale wind power generation on power system oscillations[J]. Electric Power Systems Research, 2003, 67 (1): 9-20. DOI: 10.1016/S0378-7796(03)00089-0
|
[5] |
Billanes J D, Ma Z, J?rgensen B N. Energy flexibility in the power system: challenges and opportunities in Philippines[J]. Journal of Energy and Power Engineering, 2017, 11 (9): 597-604. DOI: 10.17265/1934-8975/2017.09.005.
|
[6] |
鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40 (13): 147-158.
|
|
Lu Z X, Li H B, Qiao Y. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40 (13): 147-158 (in Chinese)
|
[7] |
刘万宇, 李华强, 张弘历, 等. 考虑灵活性供需平衡的输电网扩展规划[J]. 电力系统自动化, 2018, 42 (5): 56-63.
|
|
Liu W Y, Li H Q, Zhang H L, et al. Expansion planning of transmission grid based on coordination of flexible power supply and demand[J]. Automation of Electric Power Systems, 2018, 42 (5): 56-63 (in Chinese)
|
[8] |
鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37 (1): 9-20.
|
|
Lu Z X, Li H B, Qiao Y. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37 (1): 9-20 (in Chinese)
|
[9] |
Ren G, Liu J, Wan J, et al. Overview of wind power intermittency: impacts, measurements, and mitigation solutions[J]. Applied Energy, 2017, 204: 47-65. DOI: 10.1016/j.apenergy.2017.06.098
|
[10] |
Ara A L, Sabour R, Nasir M. Multi-objective mathematical programming to simultaneously control SCUC and OUPFC to improve power system controllability[J]. IETE Journal of Research, 2023, 69 (6): 3788-3807. DOI: 10.1080/03772063.2021.1919218
|
[11] |
Romero S M, Hughes W. Bringing variable renewable energy up to scale: options for grid integration using natural gas and energy storage[J]. World Bank Other Operational Studies, 2015, 253 (11): 1997-2005. DOI: 10.1007/s00417-015-3137-5
|
[12] |
Simshauser P. The hidden costs of wind generation in a thermal power system: what cost?[J]. Australian Economic Review, 2011, 44 (3): 269-292. DOI: 10.1111/j.1467-8462.2011.00646.x
|
[13] |
Akrami A, Doostizadeh M, Aminifar F. Power system flexibility: an overview of emergence to evolution[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7 (5): 987-1007
doi: 10.1007/s40565-019-0527-4
|
[14] |
Ding Y, Song C Z, Yan J Y, et al. Economical flexibility options for integrating fluctuating wind energy in power systems: the case of China[J]. Applied Energy, 2018, 228: 426-436. DOI: 10.1016/j.apenergy.2018.06.066
|
[15] |
Ali H, Sanjaya S, Suryadi B, et al. Analysing CO2 emissions from Singapore’s electricity generation sector: strategies for 2020 and beyond[J]. Energy, 2017, 124 (Apr. 1): 553-564. DOI: 10.1016/j.energy.2017.01.112
|
[16] |
Su S, Tan D, Li X, et al. Multi-time scale coordinated optimization of new energy high permeability power system considering flexibility requirements[J]. Journal of Electrical Engineering & Technology, 2022: 1-14. DOI: 10.1007/s42835-022-01244-7
|
[17] |
彭虎, 郭钰锋, 王松岩, 等. 风电场风速分布特性的模式分析[J]. 电网技术, 2010, 34 (9): 206-210.
|
|
Peng H, Guo Y F, Wang S Y, et al. Pattern analysis on characteristics of wind speed distribution in wind farms[J]. Power System Technology, 2010, 34 (9): 206-210 (in Chinese)
|
[18] |
Akdag S A, Dinler A. A new method to estimate Weibull parameters for wind energy applications[J]. Energy Conversion and Management, 2009, 50 (7): 1761-1766
|
[19] |
Sarkar S, Ajjarapu V. MW resource assessment model for a hybrid energy conversion system with wind and solar resources[J]. IEEE Transactions on Sustainable Energy, 2011, 2 (4): 383-391
|
[20] |
Farooq Z, Rahman A, Lone S A. Multi-stage fractional-order controller for frequency mitigation of EV-based hybrid power system[J]. IETE Journal of Research, 2023, 69 (11): 8153-8167
|
[21] |
Xing T, Caijuan Q, Liang Z, et al. A comprehensive flexibility optimization strategy on power system with high-percentage renewable energy[C]. International Conference on Power & Renewable Energy, 2017: 553-558. DOI: 10.1109/ICPRE.2017.8390596
|
[22] |
自然资源保护协会. 电力系统灵活性提升: 技术路径、经济性与政策建议[R/OL]. 2022 [2023-05-01]. http://www.nrdc.cn/Public/uploads/2022-07-18/62d4c2e313df1.pdf.
|
|
The Natural Resources Defense Council (NRDC). Improving power system flexibility: technical pathways, economic analysis, and policy recommendations[R/OL]. 2022 [2023-05-01]. http://www.nrdc.cn/Public/uploads/2022-07-18/62d4c2e313df1.pdf (in Chinese)
|
[23] |
Pan Z, Sun H. Quantification of operational flexibility from a heating network[C]. Shanghai: Applied Energy Symposium and Forum, 2018
|
[24] |
Cochran J M, Palchak J D, Ehlen A K, et al. Greening the grid: pathways to integrate 175 gigawatts of renewable energy into India’s electric grid, regional study: Maharashtra[R]. United States: National Renewable Energy Lab (NREL), 2018
|
[25] |
Li X, Ma R, Yan S, et al. Multi-timescale cooperated optimal dispatch strategy for ultra-large-scale storage system[J]. Energy Reports, 2020, 6: 1-8. DOI: 10.1016/j.egyr.2020.10.026
|
[26] |
Zhuo Z Y, Zhang N, Yang J W, et al. Transmission expansion planning test system for AC/DC hybrid grid with high variable renewable energy penetration[J]. IEEE Transactions on Power Systems, 2019, 35 (4): 2597-2608
|