|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (5): 605-621.doi: 10.12006/j.issn.1673-1719.2021.278
• Impacts of Climate Change • Previous Articles Next Articles
MA Li-Juan1(), XIAO Cun-De2, KANG Shi-Chang3,4
Received:
2021-12-17
Revised:
2022-02-28
Online:
2022-09-30
Published:
2022-04-25
MA Li-Juan, XIAO Cun-De, KANG Shi-Chang. Characteristics, and similarities and differences of climate change in major high mountains in the world—comprehensive interpretation of IPCC AR6 WGI report and SROCC[J]. Climate Change Research, 2022, 18(5): 605-621.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.278
Fig. 1 Geographic distribution of ocean and cryosphere components[4]. (Numbers indicate glacierized regions from RGI 6.0. Green ocean colors indicate larger surface current speed)
Fig. 3 Projected changes (1986-2005 to 2031-2050 and 2080-2099) of mean winter snow water equivalent, winter air temperature and summer air temperature in five high mountain regions for RCP8.5 and RCP2.6 [2]
![]() |
Table 1 Regional glacier-covered area, glacier mass (presented as potential sea level rise equivalent) in year 2000, glacier mass change rate in period 2000-2019 [8]
![]() |
Fig. 6 Mean annual ground temperature at 10-20 m depth from boreholes in debris and bedrock in the European Alps, Scandinavia and High Mountain Asia [2]
[1] | 《大气科学辞典》编委会. 《大气科学辞典》[M]. 北京: 气象出版社, 1994: 980. |
Editorial Board of Dictionary of Atmospheric Science. Dictionary of atmospheric science[M]. Beijing: China Meteorological Press, 1994: 980 (in Chinese) | |
[2] | IPCC. Special report on the ocean and cryosphere in a changing climate[M]. Cambridge: Cambridge University Press, 2019: 755 |
[3] | RGI Consortium. Randolph glacier inventory[R/OL]. 2017 [2021-12-01]. https://doi.org/10.7265/n5-rgi-60 |
[4] | IPCC. Climate change 2021: the physical science basis[M/OL]. 2021 [2021-12-16].https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/ |
[5] | 康世昌, 郭万钦, 钟歆玥, 等. 全球山地冰冻圈变化、影响与适应[J]. 气候变化研究进展, 2020, 16 (2): 143-152. |
Kang S C, Guo W Q, Zhong X Y, et al. Changes in the mountain cryosphere and their impacts and adaptation measures[J]. Climate Change Research, 2020, 16 (2): 143-152 (in Chinese) | |
[6] | 钟歆玥, 康世昌, 郭万钦, 等. 最近十多年来冰冻圈加速萎缩[J]. 冰川冻土, 2021, 43 (6): 1-8. |
Zhong X Y, Kang S C, Guo W Q, et al. The rapidly shrinking cryopshere in the past decade: an interpretation of cryospheric changes from IPCC WGI sixth assessment report[J]. Journal of Glaciology and Geocryology, 2021, 43 (6): 1-8 (in Chinese) | |
[7] | 效存德, 杨佼, 张通, 等. 冰冻圈变化的可预测性、不可逆性和深度不确定性[J]. 气候变化研究进展, 2022, 18 (1): 1-11. |
Xiao C D, Yang J, Zhang T, et al. The predictability, irreversibility and deep uncertainty of cryospheric change[J]. Climate Change Research, 2022, 18 (1): 1-11 (in Chinese) | |
[8] | 余荣, 翟盘茂. 海洋和冰冻圈变化有关的极端事件、突变及其影响与风险[J]. 气候变化研究进展, 2020, 16 (2): 194-202. |
Yu R, Zhai P M. Ocean and cryosphere change related extreme events, abrupt change and its impact and risk[J]. Climate Change Research, 2020, 16 (2): 194-202 (in Chinese) | |
[9] |
Xiao H X, Zhang F, Miao L, et al. Long-term trends in Arctic surface temperature and potential causality over the last 100 years[J]. Climate Dynamics, 2020, 55: 1443-1456. DOI: 10.1007/s00382-020-05330-2
doi: 10.1007/s00382-020-05330-2 URL |
[10] |
Zhang H B, Immerzeel W W, Zhang F, et al. Snow cover persistence reverses the altitudinal patterns of warming above and below 5000 m on the Tibetan Plateau[J]. Science of The Total Environment, 2022: 803. DOI: 10.1016/j.scitotenv.2021.149889
doi: 10.1016/j.scitotenv.2021.149889 |
[11] |
Thakuri S, Dahal S, Shrestha D, et al. Elevation-dependent warming of maximum air temperature in Nepal during 1976-2015[J]. Atmospheric Research, 2019, 228: 261-269. DOI: 10.1016/j.atmosres.2019.06.006
doi: 10.1016/j.atmosres.2019.06.006 |
[12] |
Rottler E, Kormann C, Francke T, et al. Elevation-dependent warming in the Swiss Alps 1981-2017: features, forcings and feedbacks[J]. International Journal of Climatology, 2019, 39: 2556-2568. DOI: 10.1002/joc.5970
doi: 10.1002/joc.5970 URL |
[13] | 王杰, 张明军, 王圣杰, 等. 1961—2013年新疆雪雨比变化[J]. 干旱区研究, 2017, 34 (4): 889-897. |
Wang J, Zhang M J, Wang S J, et al. Changes of snowfall/rainfall ratio in Xinjiang during the period of 1961-2013[J]. Arid Zone Research, 2017, 34 (4): 889-897 (in Chinese) | |
[14] | 王超, 肖天贵, 假拉, 等. 西藏地区降雪降水天数比率(SD/PD)变化特征分析[J]. 成都信息工程大学学报, 2017, 32 (5): 67-71. |
Wang C, Xiao T G, Jia L, et al. Changes in days of snowfall/precipitation ratio in Tibet[J]. Journal of Chengdu University of Information Technology, 2017, 32 (5): 67-71. DOI: 10.16836/j.cnki.jcuit.2017.05.011 (in Chinese)
doi: 10.16836/j.cnki.jcuit.2017.05.011 |
|
[15] |
Hammond J C, Saavedra F A, Kampf S K. Global snow zone maps and trends in snow persistence 2001-2016[J]. International Journal of Climatology, 2018, 38: 4369-4383. DOI: 10.1002/joc.5674
doi: 10.1002/joc.5674 URL |
[16] |
Notarnicola C. Hotspots of snow cover changes in global mountain regions over 2000-2018[J]. Remote Sensing of Environment, 2020, 243: 111781. DOI: 10.1016/j.rse.2020.111781
doi: 10.1016/j.rse.2020.111781 URL |
[17] |
Rounce R D, Hock R, Shean E D. Glacier mass change in high mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM)[J]. Frontiers in Earth Science, 2020, 7: 331. DOI: 10.3389/feart.2019.00331
doi: 10.3389/feart.2019.00331 URL |
[18] | Global Climate Observing System (GCOS). The global observing system for climate: implementation needs[R/OL]. 2016 [2021-12-01].http://www.wmo.int/pages/prog/gcos/ |
[19] | 施雅风, 沈永平, 胡汝骥, 等. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24 (3): 219-226. |
Shi Y F, Shen Y P, Hu R J. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24 (3): 219-226 (in Chinese) | |
[20] | 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23 (2): 152-164. |
Shi Y F, Shen Y P, Li D L, et al. Discussion on the present climate change from warm-dry to warm-wet in Northwest China[J]. Quaternary Sciences, 2003, 23 (2): 152-164 (in Chinese) | |
[21] | 张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响: 总体暖干化, 局部出现暖湿迹象[J]. 干旱气象, 2010, 28 (1): 1-7. |
Zhang Q, Zhang C J, Bai H Z, et al. New development of climate change in Northwest China and its impact on arid environment[J]. Journal of Arid Meteorology, 2010, 28 (1): 1-7 (in Chinese) | |
[22] | 蓝永超, 鲁承阳, 喇承芳, 等. 黄河源区气候向暖湿转变的观测事实及其水文响应[J]. 冰川冻土, 2013, 35 (4): 920-928. |
Lan Y C, Lu C Y, La C F, et al. The fact of climate shift to warm-humid in the source regions of the Yellow River and its hydrologic response[J]. Journal of Glaciology and Geocryology, 2013, 35 (4): 920-928 (in Chinese) | |
[23] | 张雪婷, 李雪梅, 高培. 基于不同方法的中国天山山区降水形态分离研究[J]. 冰川冻土, 2017, 39 (2): 235-244. |
Zhang X T, Li X M, Gao P. Separation of precipitation forms based on different methods in Tianshan Mountainous area, Northwest China[J]. Journal of Glaciology and Geocryology, 2017, 39 (2): 235-244 (in Chinese) | |
[24] | WMO. Volume II: measurement of cryospheric variables in WMO guide to instruments and methods of observation[S/OL]. 2018 [2021-12-01].http://library.wmo.int/doc_num.php?explnum_id=9870 |
[25] |
Thornton M J, Palazzi E, Pepin N C, et al. Toward a definition of essential mountain climate variables[J]. One Earth, 2021, 4: 805-827
doi: 10.1016/j.oneear.2021.05.005 URL |
[1] | JIANG Han-Ying, GAO Xiang, WANG Can. Progress and evaluation of international climate change cooperation [J]. Climate Change Research, 2022, 18(5): 591-604. |
[2] | GUO Si-Yue, GENG Yong. Interpretation of IPCC AR6 on mitigation in industry [J]. Climate Change Research, 2022, 18(5): 574-579. |
[3] | BAI Quan, HU Shan, GU Li-Jing. Interpretation of IPCC AR6 on buildings [J]. Climate Change Research, 2022, 18(5): 557-566. |
[4] | WANG Zhuo-Ni, YUAN Jia-Shuang, PANG Bo, HUANG Lei. The interpretation and highlights on mitigation of climate change in IPCC AR6 WGIII report [J]. Climate Change Research, 2022, 18(5): 531-537. |
[5] | TAN Xian-Chun, DAI Han-Cheng, GU Bai-He, HUANG Chen, ZHU Kai-Wei, MA Xiao-Tian, YAN Hong-Shuo, LIU Xin-Yuan, ZHU Yan-Lei. Analysis on the key findings related to emission trends and drivers from the IPCC AR6 report [J]. Climate Change Research, 2022, 18(5): 538-545. |
[6] | GAO Yuan, OU Xun-Min. Interpretation of IPCC AR6 report: transportation carbon emissions reduction pathways strengthening technology and management innovation [J]. Climate Change Research, 2022, 18(5): 567-573. |
[7] | YUAN Jia-Shuang, ZHANG Yong-Xiang, CHEN Ying, YU Jin-Yuan, WANG Hong-Li. Understanding the latest progress in mitigating climate change and facilitating carbon neutrality [J]. Climate Change Research, 2022, 18(5): 523-530. |
[8] | LIU Junguo, MENG Ying, ZHANG Xue-Jing. Interpretation of IPCC AR6 report: groundwater [J]. Climate Change Research, 2022, 18(4): 414-421. |
[9] | LIU Junguo, CHEN He, TIAN Zhan. Interpretation of IPCC AR6: climate change and water security [J]. Climate Change Research, 2022, 18(4): 405-413. |
[10] | DUAN Ju-Qi, YUAN Jia-Shuang, XU Xin-Wu, JU Hui. Interpretation of the IPCC AR6 report on agricultural systems [J]. Climate Change Research, 2022, 18(4): 422-432. |
[11] | ZHANG Bai-Chao, PANG Bo, QIN Yun, HAN Zhen-Yu, LU Bo. Interpretation of Climate Resilient Development in IPCC AR6 WGII [J]. Climate Change Research, 2022, 18(4): 460-467. |
[12] | HU Yi-Lun, JI Guo-Xu, LI Ji-Hong, HASBAGAN Ganjurjav, HU Guo-Zheng, GAO Qing-Zhu. Interpretation of IPCC AR6: terrestrial and freshwater ecosystems and their services [J]. Climate Change Research, 2022, 18(4): 395-404. |
[13] | ZHOU Jian-Qin, HUANG Wei, LI Meng, ZHENG Jian-Meng, LUO Meng, FU Rui. Dry-wet climate evolution feature and projection of future changes based on CMIP6 models in early summer over Yunnan province, China [J]. Climate Change Research, 2022, 18(4): 482-491. |
[14] | WANG Lei, ZHANG Bai-Chao, SHI Ying, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on the impacts and risks of climate change [J]. Climate Change Research, 2022, 18(4): 389-394. |
[15] | QIN Yun, XU Xin-Wu, WANG Lei, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on adaptation options of climate change [J]. Climate Change Research, 2022, 18(4): 452-459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|