|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (3): 294-304.doi: 10.12006/j.issn.1673-1719.2021.274
Special Issue: “碳中和”目标下的关键节点——2035美丽中国低碳发展路径研究专栏
• Low carbon development path under the target of beautiful China 2035—a study of key milestone in carbon neutrality • Previous Articles Next Articles
YAN Shu-Qi1, LI Su-Mei1, LYU He1, CHEN Sha1(), LIU Ying-Ying1, WANG Hong-Tao2, LIU Hui-Zheng3, CHEN Qian-Li4
Received:
2021-12-06
Revised:
2022-01-13
Online:
2022-05-30
Published:
2022-04-29
Contact:
CHEN Sha
E-mail:chensha@bjut.edu.cn
YAN Shu-Qi, LI Su-Mei, LYU He, CHEN Sha, LIU Ying-Ying, WANG Hong-Tao, LIU Hui-Zheng, CHEN Qian-Li. Water footprint analysis of electricity production in Xinjiang Uygur Autonomous Region based on a hybrid LCA model and its changes under carbon neutralization target[J]. Climate Change Research, 2022, 18(3): 294-304.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.274
[1] |
Xiang X, Jia S. China’s water-energy nexus: assessment of water-related energy use[J]. Resources, Conservation and Recycling, 2019, 144: 32-38
doi: 10.1016/j.resconrec.2019.01.009 URL |
[2] | United Nations Water. The United Nations world water development[R/OL]. 2019 [2021-10-01]. https://www.un.org/zh/global-issues/water |
[3] | 李悦, 崔玉杰. 中国能源消费总量的预测及影响因素分析[J]. 低碳经济, 2020, 9 (1): 1-9. |
Li Y, Cui Y J. Prediction of total energy consumption in China and analysis of its influencing factors[J]. Journal of Low Carbon Economy, 2020, 9 (1): 1-9 (in Chinese)
doi: 10.12677/JLCE.2020.91001 URL |
|
[4] |
Zhang C, Zhong L, Liang S, et al. Virtual scarce water embodied in inter-provincial electricity transmission in China[J]. Applied Energy, 2017, 187: 438-448
doi: 10.1016/j.apenergy.2016.11.052 URL |
[5] | Xu L J, Fan X C, Wang W Q, et al. Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 274-285 |
[6] | Xu L, Eli W, Abudula A. Construction and practice of fine-grained energy management research center of engineering and technology[J]. Experimental Technology & Management, 2014, 31 (11): 153-155 |
[7] |
Hoekstra A Y, Chapagain A K. Water footprints of nations: water use by people as a function of their consumption pattern[J]. Water Resources Management, 2006, 21 (1): 35-48
doi: 10.1007/s11269-006-9039-x URL |
[8] | Hua E, Wang X, A. Engel B, et al. Water competition mechanism of food and energy industries in WEF nexus: a case study in China[J]. Agricultural Water Management, 2021, 254 (3): 106941 |
[9] |
Tandon S A, Kolekar N, Kumar R. Water and energy footprint assessment of bottled water industries in India[J]. Natural Resources, 2014, 5 (2): 68-72
doi: 10.4236/nr.2014.52007 URL |
[10] |
Ming J, Liao X, Zhao X. Grey water footprint for global energy demands[J]. Frontiers of Earth Science, 2020, 14 (1): 201-208
doi: 10.1007/s11707-019-0760-1 URL |
[11] |
Anna T, William H, Paul C, et al. A methodology for industrial water footprint assessment using energy-water-carbon nexus[J]. Processes, 2021, 9 (2). DOI: 10.3390/pr9020393
doi: 10.3390/pr9020393 |
[12] |
Chini C M, Peer R A M. The traded water footprint of global energy from 2010 to 2018 [J]. Scientific Data, 2021, 8 (1). DOI: 10.1038/s41597-020-00795-6
doi: 10.1038/s41597-020-00795-6 |
[13] | Hoekstra A, Chapagain A, Aldaya M M, et al. The water footprint assessment manual: setting the global standard[M]. London: Earthscan, 2011 |
[14] | 钱逸颖, 董会娟, 田旭, 等. 应对水资源危机的中国水足迹研究综述[J]. 生态经济, 2018, 34 (7): 162-166. |
Qian Y Y, Dong H J, Tian X, et al. A review of the research on China’s water footprint responding to water crisis[J]. Ecological Economy, 2018, 34 (7): 162-166 (in Chinese) | |
[15] | 陈莎, 吕鹤, 李素梅, 等. 面向水资源可持续利用的综合水足迹评价方法[J]. 水资源保护, 2021, 37 (4): 7. |
Chen S, Lyu H, Li S M, et al. Methods of comprehensive water footprint assessment for sustainable utilization of water resources[J]. Water Resources Protection, 2021, 37 (4): 7 (in Chinese) | |
[16] | Jia C, Yan P, Liu P, et al. Energy industrial water withdrawal under different energy development scenarios: a multi-regional approach and a case study of China[J]. Renewable & Sustainable Energy Reviews, 2021, 135: 110224 |
[17] | 姜小云. 基于生命周期评价的我国区域电力水足迹特征研究[D]. 上海: 上海交通大学, 2019. |
Jiang X Y. Study on water footprint of regional electricity production in China based on life cycle assessment[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese) | |
[18] |
Xie X, Jiang X, Zhang T, et al. Study on impact of electricity production on regional water resource in China by water footprint[J]. Renewable Energy, 2020, 152 (C): 165-178
doi: 10.1016/j.renene.2020.01.025 URL |
[19] |
Zhu X, Guo R, Chen B, et al. Embodiment of virtual water of power generation in the electric power system in China[J]. Applied Energy, 2015, 151: 345-354
doi: 10.1016/j.apenergy.2015.04.082 URL |
[20] | 朱永楠, 姜珊, 赵勇, 等. 我国煤电生产水足迹评价[J]. 水电能源科学, 2019, 37 (9): 28-31. |
Zhu Y N, Jiang S, Zhao Y, et al. Water footprint evaluation of coal-fired power generation in China[J]. Water Resources and Power, 2019, 37 (9): 28-31 (in Chinese) | |
[21] |
Zhang C, Anadon L D. Life cycle water use of energy production and its environmental impacts in China[J]. Environmental Science & Technology, 2013, 47 (24): 14459-14467
doi: 10.1021/es402556x URL |
[22] | Macknick J, Newmark R, Heath G, et al. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature[J]. Environmental Research Letters, 2012, 7 (4): 189-190 |
[23] | Meldrum J, Nettles-Anderson S, Heath G, et al. Life cycle water use for electricity generation: a review and harmonization of literature estimates[J]. Environmental Research Letters, 2013, 8 (1): 015031 |
[24] | Liu J, Zhao D, Gerbens-Leenes P W, et al. China’s rising hydropower demand challenges water sector[J]. Scientific Reports, 2015, 5 (1): 11446 |
[25] | 檀勤良, 姚洵睿, 艾柄均. 考虑生命周期的中国煤电水足迹评估[J]. 华北电力大学学报: 社会科学版, 2020 (5): 41-50. |
Tan Q L, Yao X R, Ai B J. Water footprint assessment of coal-fired power generation in China based on life cycle theory[J]. Journal of North China Electric Power University: Social Sciences, 2020 (5): 41-50 (in Chinese) | |
[26] |
Chai L, Liao X, Yang L, et al. Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis[J]. Applied Energy, 2018, 231: 951-958
doi: 10.1016/j.apenergy.2018.09.178 URL |
[27] |
Ma X T, Yang D L, Shen X X, et al. How much water is required for coal power generation: an analysis of gray and blue water footprints[J]. Science of The Total Environment, 2018, 636 (1): 547-557
doi: 10.1016/j.scitotenv.2018.04.309 URL |
[28] |
Wu X D, Ji X, Li C, et al. Water footprint of thermal power in China: implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system[J]. Energy Policy, 2019, 132: 452-461
doi: 10.1016/j.enpol.2019.05.049 URL |
[29] | 谭圣林, 邱国玉, 熊育久. 投入产出法在虚拟水消费与贸易研究中的新应用[J]. 自然资源学报, 2014, 29 (2): 355-364. |
Tan S L, Qiu G Y, Xiong Y J. New application of the input-output framework in the study of virtual water consumption and trade[J]. Journal of Natural Resources, 2014, 29 (2): 355-364 (in Chinese) | |
[30] |
孙才志, 郑靖伟. 基于投入产出表的中国水资源消耗结构路径分析[J]. 地理科学进展, 2021, 40 (3): 370-381.
doi: 10.18306/dlkxjz.2021.03.002 |
Sun C Z, Zheng J W. Structural path analysis of water resources consumption in China based on input-output table[J]. Progress in Geography, 2021, 40 (3): 370-381 (in Chinese) | |
[31] | 孙才志, 刘淑彬. 基于MRIO模型的中国省(市)区水足迹测度及空间转移格局[J]. 自然资源学报, 2019, 34 (5): 945-956. |
Sun C Z, Liu S B. Water footprint and space transfer at provincial level of China based on MRIO model[J]. Journal of Natural Resources, 2019, 34 (5): 945-956 (in Chinese)
doi: 10.31497/zrzyxb.20190504 URL |
|
[32] |
Liao X, Zhao X, Liu W, et al. Comparing water footprint and water scarcity footprint of energy demand in China’s six megacities[J]. Applied Energy, 2020, 269. DOI: 10.1016/j.apenergy.2020.115137
doi: 10.1016/j.apenergy.2020.115137 |
[33] | 杨文娟, 赵荣钦, 张战平, 等. 河南省不同产业碳水足迹效率研究[J]. 自然资源学报, 2019, 34 (1): 92-103. |
Yang W J, Zhao R Q, Zhang Z P, et al. Industrial carbon and water footprint efficiency of Henan province based on input-output analysis[J]. Journal of Natural Resources, 2019, 34 (1): 92-103 (in Chinese)
doi: 10.31497/zrzyxb.20190108 URL |
|
[34] |
Okadera T, Geng Y, Fujita T, et al. Evaluating the water footprint of the energy supply of Liaoning province, China: a regional input-output analysis approach[J]. Energy Policy, 2015, 78: 148-157
doi: 10.1016/j.enpol.2014.12.029 URL |
[35] |
Liao X, Chai L, Xu X, et al. Grey water footprint and interprovincial virtual grey water transfers for China’s final electricity demands[J]. Journal of Cleaner Production, 2019, 227: 111-118
doi: 10.1016/j.jclepro.2019.04.179 URL |
[36] | 刘秀丽, 郭丕斌, 王昕. 煤炭资源型地区产业能-水足迹效率及影响因素[J]. 生态学报, 2020, 40 (24): 8999-9010. |
Liu X L, Guo P B, Wang X. Industrial energy-water footprint efficiency and its influencing factors in coal resources-based areas[J]. Acta Ecologica Sinica, 2020, 40 (24): 8999-9010 (in Chinese) | |
[37] | 梁赛, 王亚菲, 徐明, 等. 环境投入产出分析在产业生态学中的应用[J]. 生态学报, 2016, 36 (22): 7217-7227. |
Liang S, Wang Y F, Xu M, et al. Environmental input-output analysis in industrial ecology[J]. Acta Ecologica Sinica, 2016, 36 (22): 7217-7227 (in Chinese) | |
[38] | 王长波, 张力小, 庞明月. 生命周期评价方法研究综述: 兼论混合生命周期评价的发展与应用[J]. 自然资源学报, 2015, 30 (7): 1232-1242. |
Wang C B, Zhang L X, Pang M Y. A review on hybrid life cycle assessment: development and application[J]. Journal of Natural Resources, 2015, 30 (7): 1232-1242 (in Chinese) | |
[39] |
Feng K, Hubacek K, Siu Y L, et al. The energy and water nexus in Chinese electricity production: a hybrid life cycle analysis[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 342-355
doi: 10.1016/j.rser.2014.07.080 URL |
[40] |
Li X, Feng K, Siu Y L, et al. Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption[J]. Energy Policy, 2012, 45: 440-448
doi: 10.1016/j.enpol.2012.02.054 URL |
[41] |
Lindner S, Legault J, Guan D. Disaggregating the electricity sector of China’s input-output table for improved environmental life-cycle assessment[J]. Economic Systems Research, 2013, 25. DOI: 10.1080/09535314.2012.746646
doi: 10.1080/09535314.2012.746646 |
[42] |
Lindner S, Guan D. A hybrid-unit energy input-output model to evaluate embodied energy and life cycle emissions for China’s economy[J]. Journal of Industrial Ecology, 2014, 18 (2): 201-211
doi: 10.1111/jiec.12119 URL |
[43] |
Wan L, Wang C, Cai W. Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: an input-output based hybrid approach[J]. Applied Energy, 2016, 184: 26-39
doi: 10.1016/j.apenergy.2016.10.013 URL |
[44] |
Joshi S. Product environmental life-cycle assessment using input-output techniques[J]. Journal of Industrial Ecology, 1999, 3: 95-120
doi: 10.1162/108819899569449 URL |
[45] | 马忠, 张芯瑀, 冯浩源. 基于混合LCA模型的酒店服务业水足迹量化研究: 以张掖市为例[J]. 环境科学学报, 2018, 38 (9): 3780-3786. |
Ma Z, Zhang X Y, Feng H Y. Research on the water footprint quantification of the hotel service industry based on the hybrid LCA model: a case of Zhangye[J]. Acta Scientiae Circumstantiae, 2018, 38 (9): 3780-3786 (in Chinese) | |
[46] | Swiss Centre for Life Cycle Inventories. The eco-invent database[EB/OL]. 2015 [2021-01-15]. http://www.ecoinvent. |
[47] | Aldaya M M, Chapagain A K, Hoekstra A Y, et al. The water footprint assessment manual[J]. London: Eearthscan, 2011 |
[48] | 马忠, 张继良. 张掖市虚拟水投入产出分析[J]. 统计研究, 2008 (5): 65-70. |
Ma Z, Zhang J L. Analysis on virtual water in Zhangye city using regional input-output model[J]. Statistical Research, 2008 (5): 65-70 (in Chinese) | |
[49] |
Wang S, Cao T, Chen B. Water-energy nexus in China’s electric power system[J]. Energy Procedia, 2017, 105: 3972-3977
doi: 10.1016/j.egypro.2017.03.828 URL |
[50] |
Wang S, Chen B. Energy-water nexus of urban agglomeration based on multiregional input-output tables and ecological network analysis: a case study of the Beijing-Tianjin-Hebei region[J]. Applied Energy, 2016, 178: 773-783
doi: 10.1016/j.apenergy.2016.06.112 URL |
[51] | 中华人民共和国中央人民政府. “疆电外送”首次突破500亿千瓦时[EB/OL]. 2019 [2021-02-01]. http://www.gov.cn/xinwen/2019-02/01/content_5363129.htm. |
The Central People’s Government of The People’s Republic of China. ‘Xinjiang Power Transmission’ for the first time exceeded 50 billion kWh[EB/OL]. 2019 [2021-02-01]. http://www.gov.cn/xinwen/2019-02/01/content_5363129.htm (in Chinese) | |
[52] | 热孜娅∙阿曼, 方创琳, 赵瑞东. 新疆水资源承载力评价与时空演变特征分析[J]. 长江流域资源与环境, 2020, 29 (7): 1576-1585. |
Re A, Fang C L, Zhao R D. Research on the water resources carrying capacity and spatial-temporal characteristics in Xinjiang[J]. Resources and Environment in The Yangtze Basin, 2020, 29 (7): 1576-1585 (in Chinese) | |
[53] | 邓铭江, 李湘权, 龙爱华, 等. 支撑新疆经济社会跨越式发展的水资源供需结构调控分析[J]. 干旱区地理, 2011, 34 (3): 379-390. |
Deng M J, Li X Q, Long A H, et al. Regulation of supply and demand structure of the water resources and support economic and social leap-forward development of protection measures[J]. Arid Land Geography, 2011, 34 (3): 379-390 (in Chinese) | |
[54] | Jiang K, He C, Xu X, et al. Transition scenarios of power generation in China under global 2℃ and 1.5℃ targets[J]. Global Energy Interconnection, 2018, 1 (4): 477-486 |
[1] | LI Dan-Yang, CHEN Wen-Ying. Global transportation energy transition pathways towards carbon neutrality [J]. Climate Change Research, 2023, 19(2): 203-212. |
[2] | YANG Shan-Shan, GUO Hao, YANG Xiu, LI Zheng. Consideration and prospect of total carbon emission control system under the double carbon target [J]. Climate Change Research, 2023, 19(2): 191-202. |
[3] | FAN Xing, LI Lu, QIN Yuan-Yuan, GAO Xiang. The pathway from carbon peak to carbon neutrality in major developed economies and its insights [J]. Climate Change Research, 2023, 19(1): 102-115. |
[4] | LI Pin, XIE Xiao-Min, HUANG Zhen. The process of Germany energiewende and its enlightenment to China [J]. Climate Change Research, 2023, 19(1): 116-126. |
[5] | GUO Si-Yue, GENG Yong. Interpretation of IPCC AR6 on mitigation in industry [J]. Climate Change Research, 2022, 18(5): 574-579. |
[6] | BAI Quan, HU Shan, GU Li-Jing. Interpretation of IPCC AR6 on buildings [J]. Climate Change Research, 2022, 18(5): 557-566. |
[7] | ZENG An, TAN Xian-Chun, WANG Yi, GAO Jin-Xin. International experiences on Measurement, Reporting and Verification of climate finance and implications for China [J]. Climate Change Research, 2022, 18(2): 215-229. |
[8] | ZHANG Hao-Nan, SHEN Rong-Rong, ZHANG Xing-Ping, KANG Jun-Jie, YUAN Jia-Hai. Implications and pathways of China's carbon neutrality: a review [J]. Climate Change Research, 2022, 18(2): 240-252. |
[9] | REN Jia-Xue, GAO Qing-Xian, CHEN Hai-Tao, MENG Dan, ZHANG Yang, MA Zhan-Yun, LIU Qian, TANG Jia-Jie. Simulation research on greenhouse gas emissions from wastewater treatment plants under the vision of carbon neutrality [J]. Climate Change Research, 2021, 17(4): 410-419. |
[10] | LIU Yuan, WANG Fang, ZHANG Zheng-Tao, HUANG Cheng-Fang, CHEN Xi, LI Ning. Comprehensive assessment of “climate change-crop yield-economic impact” in seven sub-regions of China [J]. Climate Change Research, 2021, 17(4): 455-465. |
[11] | JIANG Ke-Jun, FENG Sheng-Bo. Going to the mitigation targets in Paris Agreement: the world is on the road [J]. Climate Change Research, 2021, 17(1): 1-6. |
[12] | ZHANG Ya-Xin, LUO Hui-Lin, WANG Can. Progress and trends of global carbon neutrality pledges [J]. Climate Change Research, 2021, 17(1): 88-97. |
[13] | Zheng Linchang, Qi Meng, Fu Jiafeng, Zhao Danyang. Research on the Calculation of Trade Implied Carbon Dioxide Emissions and Its Influence Factors in Hebei Province [J]. Climate Change Research, 2017, 13(2): 157-164. |
[14] | . Estimating the Macroeconomic Cost of CO2 Emission Abatement in China Based on Multi-objective Programming [J]. Climate Change Research, 2010, 6(02): 130-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|