|
Climate Change Research ›› 2021, Vol. 17 ›› Issue (1): 18-26.doi: 10.12006/j.issn.1673-1719.2020.205
• Mitigation Pathways and Policies in China with the Paris Agreement Targets • Previous Articles Next Articles
ZHANG Wen-Hua1(), YAN Qing-You1,2, HE Gang3, YUAN Jia-Hai1,2(
)
Received:
2020-09-07
Revised:
2020-10-23
Online:
2021-01-30
Published:
2021-02-04
Contact:
YUAN Jia-Hai
E-mail:zwh3702@163.com;yuanjh126@126.com
ZHANG Wen-Hua, YAN Qing-You, HE Gang, YUAN Jia-Hai. The pathway and strategy of China’s power system low-carbon transition under the constraints of climate change[J]. Climate Change Research, 2021, 17(1): 18-26.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2020.205
[1] | Hong C P, Zhang Q, Zhang Y, et al. Impacts of climate change on future air quality and human health in China[J]. PNAS, 2019, 16(35): 17193-17200 |
[2] |
Mora C, Spirandelli D, Franklin E C, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions[J]. Nature Climate Change, 2018, 8: 1062-1071
doi: 10.1038/s41558-018-0315-6 URL |
[3] | IPCC. Climate change 2014: synthesis report [M]. Cambridge: Cambridge University Press, 2014 |
[4] | Lawrence Berkeley National Laboratory. China’s greenhouse gas emission scenarios [R/OL]. 2010 [2020-01-01]. https://escholarship.org/uc/lbnl |
[5] | IEA. Global energy outlook 2010 [R/OL]. 2010 [2020-01-01]. https://www.iea.org/reports/world-energy-outlook-2010 |
[6] | McKinsey. Green China development report [R/OL]. 2010 [2020-01-01]. https://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/Sustainability/cost%20curve%20PDFs/china_green_revolution.ashx |
[7] | IRENA. Global energy transformation: a roadmap to 2050 [R/OL]. Abu Dhabi: International Renewable Energy Agency, 2018 [2020-01-01]. https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition |
[8] | 国家可再生能源中心. 美丽中国2050年的能源生态系统[R/OL]. 2018[2020-01-01]. https://max.book118.com/html/2018/0420/162194247.shtm. |
National Renewable Energy Center. Beautiful China’s energy ecosystem in 2050 [R/OL]. 2018 [2020-01-01]. https://max.book118.com/html/2018/0420/162194247.shtm (in Chinese) | |
[9] | 国家发改委能源研究所. 我国实现全球1.5℃目标下的能源排放情景研究[R]. 北京: NRDC中国煤控项目, 2018. |
Energy Institute of National Development and Reform Commission. Energy emission scenario under the global 1.5℃ target in China [R]. Beijing: NRDC Cap Coal Project, 2018 (in Chinese) | |
[10] | IEA. Power system transition in China [R/OL]. 2018 [2020-01-01]. https://webstore.iea.org/china-power-system-transformation |
[11] |
顾佰和, 谭显春, 穆泽坤, 等. 中国电力行业CO2减排潜力及其贡献因素[J]. 生态学报, 2015, 35(19): 6405-6413.
doi: 10.5846/stxb201402170272 URL |
Gu B H, Tan X C, Mu Z K, et al. CO2 emission reduction potential and contributing factors in China’s power industry[J]. Ecology, 2015, 35(19): 6405-6413 (in Chinese) | |
[12] |
苏楽榮, 赵锦洋, 胡建信. 中国电力行业1990—2050年温室气体排放研究[J]. 气候变化研究进展, 2015, 11(5): 353-362.
doi: 10.3969/j.issn.1673-1719.2015.05.009 URL |
Su S S, Zhao J Y, Hu J X. Research on greenhouse gas emissions of China’s power industry from 1990 to 2050[J]. Climate Change Research, 2015, 11(5): 353-362 (in Chinese) | |
[13] | 刘铠诚, 何桂雄, 王珺瑶, 等. 电力行业实现2030年碳减排目标的路径选择及经济效益分析[J]. 节能技术, 2018, 36(3): 263-269. |
Liu K C, He G X, Wang J Y, et al. Path selection and economic benefit analysis for the electric power industry to achieve carbon emission reduction targets in 2030[J]. Energy Conservation Technology, 2018, 36(3): 263-269 (in Chinese) | |
[14] | 霍沫霖, 邢璐, 单葆国, 等. 中国电力生产碳减排潜力自下向上测算及方法研究[J]. 中国电力, 2014, 47(11): 155-160. |
Huo M L, Xing L, Shan B G, et al. Research on the bottom-up estimation and methodology of China’s electricity production carbon emission reduction potential[J]. China Electric Power, 2014, 47(11): 155-160 (in Chinese) | |
[15] | 黄晓勇. 2019年世界能源蓝皮书 [M]. 北京: 社会科学文献出版社, 2019. |
Huang X Y. The world energy blue book 2019 [M]. Beijing: Social Sciences Literature Press, 2019 (in Chinese) | |
[16] | Lawrence Berkeley National Laboratory. Energy and CO2 implications of decarbonization strategies for China beyond efficiency: modeling 2050 maximum renewable resources and accelerated electrification impacts [EB/OL]. 2019 [2020-01-01]. https://eta-publications.lbl.gov/sites/default/files/khanna_et_al_china_2050_electricification_max_re_modeling_manuscript.pdf |
[17] |
Li J F, Ma Z Y, Zhang Y X, et al. Analysis on energy demand and CO2 emissions in China following the energy production and consumption revolution strategy and China dream target[J]. Advances in Climate Change Research, 2018, 9(1): 16-26
doi: 10.1016/j.accre.2018.01.001 URL |
[18] |
Khanna N, Zhou N, Fridley D, et al. Quantifying the potential impacts of China’s power-sector policies on coal input and CO2 emissions through 2050: a bottom-up perspective[J]. Utilities Policy, 2016, 41: 128-138
doi: 10.1016/j.jup.2016.07.001 URL |
[19] | Jiang K J, He C M, Xu X Y, et al. Transition scenarios of power generation in China under global 2℃and 1.5℃ targets[J]. Global Energy Interconnection, 2018, 1(4): 477-486 |
[20] | 马里兰大学全球可持续发展中心能源研究所. 加快中国燃煤电厂退出: 通过逐厂评估探索可行的退役路径 [R]. 北京: 国家发展和改革委员会能源研究所, 2020. |
Energy Research Institute of Global Sustainable Development in Maryland. Accelerating the exit of China’s coal-fired power plants: exploring feasible decommissioning paths through plant-by-plant evaluation [R]. Beijing: Energy Research Institute, National Development and Reform Commission, 2020 (in Chinese) | |
[21] | 张博庭. 能源革命下的水电发展机遇[J]. 能源, 2018 (1): 107-111. |
Zhang B T. Hydropower development opportunities under the energy revolution[J]. Energy, 2018 (1): 107-111 (in Chinese) | |
[22] | 国网能源院. 中国能源电力发展展望 [M]. 北京: 中国电力出版社, 2018. |
State Grid Energy Institute. China’s energy and power development prospects [M]. Beijing: China Electric Power Press, 2018 (in Chinese) | |
[23] | 国家能源局. 我国已建成全球最大清洁煤电供应体系[EB/OL]. 2019 [2020-01-01]. http://www.nea.gov.cn/2019-02/12/c_137815509.htm. |
National Energy Administration. China has established the world’s largest clean coal power supply system [EB/OL]. 2019 [2020-01-01]. http://www.nea.gov.cn/2019-02/12/c_137815509.htm (in Chinese) | |
[24] | Clean Coal Technology Center. Clean coal technology and clean energy policy [R/OL]. 2019 [2020-01-01]. http://www.rmcmi.org/education/clean-coal-technology#.X82EeDPrZmM |
[25] |
Li J J, Yang H R, Wu Y X, et al. Effects of the updated national emission regulation in China on circulating fluidized bed boilers and the solutions to meet them[J]. Environmental Science & Technology, 2013, 47(12): 6681-6687
doi: 10.1021/es4001888 URL pmid: 23676203 |
[26] | 袁家海. 以中长期视角回看煤电地位和发展路径.电力决策与舆情参考[J]. 电力决策与舆情参考, 2019 (2): 22-27. |
Yuan J H. Looking back at the status and development path of coal power from a medium and long-term perspective[J]. Power Decision and Public Opinion Reference, 2019 (2): 22-27 (in Chinese) | |
[27] | Carbon Tracker Institute. Chasing the dragon? China’s coal overcapacity crisis and what it means for investors [EB/OL]. 2016 [2020-01-01]. https://www.carbontracker.org/reports/chasing-the-dragon-china-coal-power-plants-stranded-assets-five-year-plan/ |
[28] | Oxford University. Stranded costs of coal-fired power plants in China: investment risks and policy implications [R/OL]. 2017 [2020-01-01]. https://www.smithschool.ox.ac.uk/research/sustainable-finance/publications/Stranded-Assets-and-Thermal-Coal-in-China-Working-Paper-February2017.pdf |
[29] | Xu Y, Yang K, Yuan J H. China’s power transition under the global 1.5℃ target: preliminary feasibility study and prospect[J]. Environmental Science and Pollution Research, 2020, 10: 23-41 |
[30] | 康重庆, 姚忠良. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 11(9): 2-11. |
Kang C Q, Yao Z L. Key scientific issues and theoretical research framework of high-proportion renewable energy power systems[J]. Automation of Electric Power Systems, 2017, 11(9): 2-11 (in Chinese) | |
[31] | 康重庆, 夏清, 徐玮. 电力系统不确定性分析[M]. 北京: 科学出版社, 2011. |
Kang C Q, Xia Q, Xu W. Uncertainty analysis of power system [M]. Beijing: Science Press, 2011 (in Chinese) | |
[32] |
Wang Y, Zhang N, Chen Q X, et al. Dependent discrete convolution-based probabilistic load flow for the active distribution system[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1000-1009
doi: 10.1109/TSTE.2016.2640340 URL |
[33] |
白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705.
doi: 10.13334/j.0258-8013.pcsee.2015.14.026 URL |
Bai J H, Xin S X, Liu J, et al. Research on the development path of China’s realization of a high proportion of renewable energy[J]. Journal of Electrical Engineering, 2015, 35(14): 3699-3705 (in Chinese) | |
[34] |
Majzoobi A, Khodaei A. Application of microgrids in supporting distribution grid flexibility[J]. IEEE Transactions on Power System, 2017, 32(5): 3660-3669
doi: 10.1109/TPWRS.2016.2635024 URL |
[35] | 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674. |
Xiao Y P, Wang X F, Wang X L, et al. A review of power market research facing a high proportion of renewable energy[J]. Journal of Electrical Engineering, 2018, 38(3): 663-674 (in Chinese) | |
[36] |
Liu J K, Zhang N, Kang C Q, et al. Cloud energy storage for residential and small commercial consumers: a business case study[J]. Applied Energy, 2017, 188: 226-236
doi: 10.1016/j.apenergy.2016.11.120 URL |
[37] |
Forfia D, Knight M, Melton R. The view from the top of the mountain: building a community of practice with the gridwise transactive energy framework[J]. IEEE Power and Energy Magazine, 2016, 14(3): 25-33
doi: 10.1109/MPE.2016.2524961 URL |
[38] | 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 49(13): 147-157. |
Lu Z X, Li H B, Qiao Y. Flexibility planning and challenges of power system containing a high proportion of renewable energy[J]. Power System Automation, 2016, 49(13): 147-157 (in Chinese) | |
[39] |
张宁, 康重庆, 肖晋宇, 等. 风电容量可信度研究综述与展望[J]. 中国电机工程学报, 2015, 35(1): 82-94.
doi: 10.13334/j.0258-8013.pcsee.2015.01.011 URL |
Zhang N, Kang C Q, Xiao J Y, et al. Review and prospects of wind power capacity reliability research[J]. Journal of Electrical Engineering, 2015, 35(1): 82-94 (in Chinese) | |
[40] | 潘尔生, 王新雷, 徐彤, 等. 促进可再生能源电力接纳的技术与实践[J]. 电力建设, 2017, 38(2): 1-11. |
Pan E S, Wang X L, Xu T, et al. Technology and practice to promote the acceptance of renewable energy power[J]. Electric Power Construction, 2017, 38(2): 1-11 (in Chinese) | |
[41] |
姚美齐, 李乃湖. 欧洲超级电网的发展及其解决方案[J]. 电网技术, 2014, 38(3): 549-555.
doi: 10.13335/j.1000-3673.pst.2014.03.001 URL |
Yao M Q, Li N H. The development of the European super grid and its solutions[J]. Power System Technology, 2014, 38(3): 549-555 (in Chinese) | |
[42] | 曾慧娟, 特高压. 引领中国能源战略转型[J]. 科学世界, 2014 (2): 1. |
Zeng H J. Ultra-high voltage, leading China’s energy strategic transformation[J]. Science World, 2014 (2): 1 (in Chinese) | |
[43] |
Peng W, Yuan J H, Zhao Y, et al. Air quality and climate benefits of long-distance electricity transmission in China[J]. Environmental Research Letters, 2017, 12(6): 064012
doi: 10.1088/1748-9326/aa67ba URL |
[44] | 龚思宇, 魏炜, 徐元孚, 等. 面向分布式电源最大消纳的配电网重构[J]. 电力系统及其自动化学报, 2017, 29(3): 7-11. |
Gong S Y, Wei W, Xu Y F, et al. Distribution network reconfiguration for maximum consumption of distributed power sources[J]. Journal of Electric Power System and Automation, 2017, 29(3): 7-11 (in Chinese) | |
[45] | 李文汗, 赵冬梅, 王心, 等. 考虑分布式电源并网的配电网适应性评价方法[J]. 电网与清洁能源, 2017, 33(2): 117-123. |
Li W H, Zhao D M, Wang X, et al. Evaluation method for adaptability of distribution network considering distributed power grid connection[J]. Power System and Clean Energy, 2017, 33(2): 117-123 (in Chinese) | |
[46] |
曾鸣, 杨雍琦, 刘敦楠, 等. 能源互联网“源-网-荷-储”协调优化运营模式及关键技术[J]. 电网技术, 2016, 40(1): 114-124.
doi: 10.13335/j.1000-3673.pst.2016.01.016 URL |
Zeng M, Yang Y Q, Liu D N, et al. Energy internet “source-grid-load-storage” coordinated and optimized operation mode and key technologies[J]. Power System Technology, 2016, 40(1): 114-124 (in Chinese) | |
[47] | 艾琳. 电网安全性与经济性评估若干问题研究[D]. 北京: 华北电力大学, 2009. |
Ai L. Research on several issues of power grid security and economic evaluation[D]. Beijing: North China Electric Power University, 2009 (in Chinese) |
[1] | YUAN Zhi-Yi, LI Zhen-Yu, KANG Li-Ping, TAN Xiao-Yu, ZHOU Xin-Jun, LI Xiao-Jin, LI Chao, PENG Tian-Duo, OU Xun-Min. A review of low-carbon measurements and transition pathway of transport sector in China [J]. Climate Change Research, 2021, 17(1): 27-35. |
[2] | ZHANG Ya-Xin, LUO Hui-Lin, WANG Can. Progress and trends of global carbon neutrality pledges [J]. Climate Change Research, 2021, 17(1): 88-97. |
[3] | ZUO Jia-Lu, ZHANG Lei, CHEN Min-Peng. A new model for international cooperation on climate change: exploring Trilateral Cooperation [J]. Climate Change Research, 2021, 17(1): 98-106. |
[4] | ZHU Guang-Xi, XIAO Cun-De, CHEN Bo, ZHAO Ying-Dong. Spring snowmelt flood estimate in the upper Heihe River under climate change [J]. Climate Change Research, 2020, 16(6): 667-678. |
[5] | ZHAO Meng-Xia, SU Bu-Da, WANG Yan-Jun, WANG An-Qian, JIANG Tong. Impacts of climate change on river runoff at the Ganjiang and Guanting River basins in the eastern monsoon region [J]. Climate Change Research, 2020, 16(6): 679-689. |
[6] | YUN Xiao-Bo, TANG Qiu-Hong, XU Xi-Meng, ZHOU Yuan-Yuan, LIU Xing-Cai, WANG Jie, SUN Si-Ao. Impact of climate change on water resource cooperation between the upstream and downstream of the Lancang-Mekong River basin [J]. Climate Change Research, 2020, 16(5): 555-563. |
[7] | SU Bo, XIAO Cun-De. Research and practice on socio-ecological systems resilience over cryosphere affected areas: progress and prospects [J]. Climate Change Research, 2020, 16(5): 579-590. |
[8] | LI Lin, SHEN Hong-Yan, LIU Cai-Hong, XIAO Rui-Xiang. Response of water level fluctuation to climate warming and wetting scenarios and its mechanism on Qinghai Lake [J]. Climate Change Research, 2020, 16(5): 600-608. |
[9] | SUN Li-Li, CUI Hui-Juan, GE Quan-Sheng. Potential and prospect of carbon capture, utilization and storage (CCUS) in the main Belt and Road Initiative countries [J]. Climate Change Research, 2020, 16(5): 609-616. |
[10] | FU Lin, ZHOU Ze-Yu, YANG Xiu. Experience and enlightenment on policy mechanisms for the international adaptation to climate change [J]. Climate Change Research, 2020, 16(5): 641-651. |
[11] | SHI Pei-Jun, YANG Wen-Tao. Compound effects of earthquakes and extreme weathers on geo-hazards in mountains [J]. Climate Change Research, 2020, 16(4): 405-414. |
[12] | XU Li, LI Qian, WANG Ying, HUANG Jing-Ling, XU Ying-Jun. Analysis of the changes in debris flow hazard in the context of climate change [J]. Climate Change Research, 2020, 16(4): 415-423. |
[13] | WANG Tian-Peng, TENG Fei. Review of economic impacts from climate change under the framework of computable general equilibrium models [J]. Climate Change Research, 2020, 16(4): 480-490. |
[14] | LI Rou-Ke, HAN Zhen-Yu, XU Ying, SHI Ying, WU Jia. An ensemble projection of GDP and population exposure to high temperature events over Jing-Jin-Ji district based on high resolution combined dynamical and statistical downscaling datasets [J]. Climate Change Research, 2020, 16(4): 491-504. |
[15] | YUAN Yuan, LI Guo-Qing. Japan's multi-agent framework for climate change adaptation and its enlightenment to China — from the perspective of law and policy [J]. Climate Change Research, 2020, 16(4): 505-515. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|