气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (4): 388-399.doi: 10.12006/j.issn.1673-1719.2020.287

• 减污降碳协同增效专栏 • 上一篇    下一篇

中国钢铁行业节能减排措施的协同控制效应评估研究

高玉冰1,2(), 邢有凯1,3, 何峰1,4, 蒯鹏5, 毛显强1()   

  1. 1 北京师范大学环境学院,北京 100875
    2 北京亚太展望环境发展咨询中心,北京 100191
    3 交通运输部规划研究院,交通排放控制监测技术实验室,北京 100028
    4 北京易二零环境股份有限公司,北京 100195
    5 合肥工业大学经济学院,合肥 230009
  • 收稿日期:2020-12-08 修回日期:2021-02-09 出版日期:2021-07-30 发布日期:2021-08-11
  • 通讯作者: 毛显强
  • 作者简介:高玉冰,女,中级工程师, zjjgyb91@mail.bnu.edu.cn
  • 基金资助:
    能源基金会资助项目(G-1809-28536)

Research on co-control effectiveness evaluation of energy saving and emission reduction measures in China’s iron and steel industry

GAO Yu-Bing1,2(), XING You-Kai1,3, HE Feng1,4, KUAI Peng5, MAO Xian-Qiang1()   

  1. 1 School of Environment, Beijing Normal University, Beijing 100875, China
    2 Asia-Pacific Consulting Center for Environment and Development, Beijing 100191, China
    3 Transport Planning and Research Institute, Ministry of Transport, Laboratory of Transport Pollution Control and Monitoring Technology, Beijing 100028, China
    4 Beijing E20 Environment Co., Ltd, Beijing 100195, China
    5 School of Economics, Hefei University of Technology, Hefei 230009, China
  • Received:2020-12-08 Revised:2021-02-09 Online:2021-07-30 Published:2021-08-11
  • Contact: MAO Xian-Qiang

摘要:

以中国钢铁行业为研究对象,对典型行业节能减排措施开展协同控制效应评估分析,试图为制定行业局地大气污染物与温室气体协同控制行动方案和规划提供依据。首先采用排放因子法计算各项措施对各类局地大气污染物和各类温室气体的减排量,并归一化为综合大气污染物协同减排量(ICER),进而采用协同控制效应坐标系、协同控制交叉弹性、单位污染物减排成本以及边际减排成本曲线等评估指标和方法开展协同控制效应评估。结果表明:基于2025年钢铁行业发展情景,6类28项节能减排措施可以实现每年减排SO2 51.80万t、NOx 71.35万t、PM10 29.07万t,还可协同减排CO2 6.64亿t;除末端脱碳和末端减污措施不具备协同减排效果外,多数措施均具有良好的协同控制效应;高温高压干熄焦(T3)措施单位污染物减排成本最低,超低排放改造(T28)措施减排成本最高;能效提升、原(燃)料替代类措施具有良好的财务收益;结构调整、能效提升和消费减量类措施减排潜力较大。未来应加强协同控制技术研发和协同控制规划,以实现行业局地大气污染物和温室气体协同控制综合效益优化。

关键词: 钢铁行业, 协同控制, 效应评估

Abstract:

An evaluation was conducted on the co-control effect of energy-saving and emission reduction measures in the iron and steel industry. The results could be used to support the co-control planning of local air pollutants and greenhouse gases reductions. The emission factor method was used to calculate the emission reduction of various local air pollutants and greenhouse gases by different measures. Various emission reductions were then converted into Integrated Air Pollutant Co-control Emission Reduction (ICER). Co-control effects coordinate system, co-control cross elasticity, unit pollutant reduction cost and the marginal abatement cost curve were applied to examine the co-control effects for different measures. The results show that, in 2025, the 28 measures in the iron and steel industry can reduce SO2 emission by 518.0 kt, NOx by 713.5 kt, PM10 by 290.7 kt, and CO2 by 664 Mt. Except for end-of-pipe decarbonization and pollution reduction measures that do not have co-control effects, the other 25 measures have good co-control effectiveness. The “High-Temperature/High-Pressure Boiler Technologies for Coke (T3)” has the lowest cost, and the “Ultra-Low Emission Retrofitting (T28)” has the highest cost. Most energy-efficiency improvement measures, raw (fuel) material substitution measures can bring benefits (or reduce costs). Structural adjustment and energy-efficiency improvement measures have the greatest potential for emission reduction. In the future, the co-control technology development and co-control planning in the iron and steel industry should be strengthened to realize the optimization of the co-benefits of local air pollutants and greenhouse gases synergetic reductions.

Key words: Iron and steel industry, Co-control, Effectiveness evaluation

京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn