气候变化研究进展 ›› 2020, Vol. 16 ›› Issue (4): 405-414.doi: 10.12006/j.issn.1673-1719.2019.174
收稿日期:
2019-07-25
修回日期:
2019-10-28
出版日期:
2020-07-30
发布日期:
2020-08-05
作者简介:
史培军,男,教授, 基金资助:
SHI Pei-Jun1,2,3(), YANG Wen-Tao4
Received:
2019-07-25
Revised:
2019-10-28
Online:
2020-07-30
Published:
2020-08-05
摘要:
开展多致灾因子耦合作用下的地质灾害研究对山区综合风险防范和可持续发展至关重要。在山区孕灾环境中,极端降水和地震是触发滑坡等地质灾害的主要因素。以往研究多在山地孕灾环境稳定的假设下,研究极端降水或强震单独导致的地质灾害过程,而对孕灾环境变化下的极端天气和地震致灾因子共同诱发地质灾害的关注不足。针对这一问题,梳理了国内外发生在山区的地震和极端降水共同导致滑坡等地质灾害的研究案例,系统总结了山区强震与极端降水引发滑坡等地质灾害的相互作用过程。现有研究已在地震和极端降水引发滑坡等地质灾害的问题上取得了以下认识:(1)山区地震可强烈改变孕灾环境,显著提升震后降水引发地质灾害的可能性,放大极端降水-滑坡灾害链;(2)地震对降水引发滑坡的影响随着震后时间的推移逐渐减弱,该现象可能受控于气候因素;(3)在全球气候变化背景下,极端天气气候事件增多,定量研究山区强震和极端天气气候二者“遭遇”下的地质灾害链将面临更多挑战。由于观测案例不足,针对山区地震与极端降水共同导致地质灾害的研究仍缺少定量分析,触发机理也需进一步明确。
史培军, 杨文涛. 山区孕灾环境下地震和极端天气气候对地质灾害的影响[J]. 气候变化研究进展, 2020, 16(4): 405-414.
SHI Pei-Jun, YANG Wen-Tao. Compound effects of earthquakes and extreme weathers on geo-hazards in mountains[J]. Climate Change Research, 2020, 16(4): 405-414.
图1 汶川地震后重建的平武县建全村被发生于2013年8月的泥石流摧毁,地震前2002年11月的卫星影像(a),地震4年后的卫星影像(b),泥石流后的卫星影像(c) 注:所有影像来自Google Earth,研究区位于32°14′57.8′′N,104°53′8.7′′E。
Fig. 1 The post-seismic newly built buildings in Jianquan village, Pingwu, were destroyed by a debris flow in August 2013, pre-seismic 1 m resolution IKONOS image (a), 0.5 m WorldView-01 image in 2012 (b) (4 years after the earthquake),1 m IKONOS image after the debris flow (c)
图2 极端天气气候对地震-地质灾害链影响(a)灾害“遭遇”,(b)地震可显著改变孕灾环境,使降水极易诱发地质灾害(黑线所示)
Fig. 2 Impact of extreme weather and climate on earthquake-landslide hazard chain (a) when intense precipitation and earthquake occur concurrently, (b) major earthquakes could significantly alter environment, making lots of slopes unstable during precipitation
图4 2018年10月雅鲁藏布冰川泥石流堵江前后的卫星影像(a) 2017年11月18日林芝色东普沟地震烈度图(来源:USGS),(b) 2017年2月4日地震前影像,(c) 2018年1月22日地震后影像,(d) 2018年11月12日色东普沟冰崩泥石流堵江后的影像
Fig. 4 Satellite images before and after the outburst of the glacial debris flow in October 2018 at Yalong Zangbo River (a) intensity map of the Milin earthquake on 18th November 2017 (data source: USGS), (b) false color Landsat 8 OSL image on 4 February 2017 before the earthquake, (c) post-seismic image on 22 January 2018, (d) debris dammed lake on 12 November 2018
[1] | 陈顒, 史培军. 自然灾害[M]. 北京: 北京师范大学出版社, 2008. |
Chen Y, Shi P J. Natural disaster [M]. Beijing: Beijing Normal University Press, 2008 (in Chinese) | |
[2] | 史培军. 再论灾害研究的理论与实践[J]. 自然灾害学报, 1996,5(4):6-17. |
Shi P J. Theory and practice of disaster study[J]. Journal of Natural Disasters, 1996,5(4):6-17 (in Chinese) | |
[3] | 史培军. 灾害研究的理论与实践[J]. 南京大学学报, 1991,11:37-42. |
Shi P J. On the theory of disaster research and its practice[J]. Journal of Nanjing University, 1991,11:37-42 (in Chinese) | |
[4] | 史培军. 三论灾害研究的理论与实践[J]. 自然灾害学报, 2002,11(3):1-9. |
Shi P J. Theory on disaster science and disaster dynamics[J]. Journal of Natural Disasters, 2002,11(3):1-9 (in Chinese) | |
[5] | 史培军, 吕丽莉, 汪明, 等. 灾害系统:灾害群、灾害链、灾害遭遇[J]. 自然灾害学报, 2014,23(6):1-12. |
Shi P J, Lyu L L, Wang M, et al. Disaster system: disaster cluster, disaster chain and disaster compound[J]. Journal of Natural Disasters, 2014,23(6):1-12 (in Chinese) | |
[6] | 祁生文, 许强, 刘春玲, 等. 汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J]. 工程地质学报, 2009,17(1):39-49. |
Qi S W, Xu Q, Liu C L, et al. Slope instabilities in the severest disaster areas of 512 Wenchuan earthquake[J]. Journal of Engineering Geology, 2009,17(1):39-49 (in Chinese) | |
[7] | 崔鹏, 韩用顺, 陈晓清. 汶川地震堰塞湖分布规律与风险评估[J]. 四川大学学报: 工程科学版, 2009,3:35-42. |
Cui P, Han Y S, Chen X Q. Distribution and risk analysis of dammed lakes reduced by Wenchuan earthquake[J]. Journal of Sichuan University: Engineering Science Edition, 2009,3:35-42 (in Chinese) | |
[8] |
Petley D. Global patterns of loss of life from landslides[J]. Geology, 2012,40(10):927-930
doi: 10.1130/G33217.1 URL |
[9] | 徐锡伟, 闻学泽, 叶建青, 等. 汶川Ms8.0地震地表破裂带及其发震构造[J]. 地震地质, 2008,30(3):597-629. |
Xu X W, Wen X Z, Ye J Q, et al. The Ms8.0 Wenchuan earthquake surface rupture and its seismogenic structure[J]. Seismology and Geology, 2008,30(3):597-629 (in Chinese) | |
[10] | 许强, 李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报, 2010,6:818-826. |
Xu Q, Li W L. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010,6:818-826 (in Chinese) | |
[11] |
许冲. 汶川地震滑坡详细编录及其与全球其他地震滑坡事件对比[J]. 科技导报, 2012,30(25):18-26.
doi: 10.3981/j.issn.1000-7857.2012.25.008 URL |
Xu C. Detailed inventory of landslides triggered by the 2008 Wenchuan earthquake and its comparison with other earthquake events in the world[J]. Science & Technology Review, 2012,30(25):18-26 (in Chinese) | |
[12] | 殷跃平. 汶川八级地震地质灾害研究[J]. 工程地质学报, 2008,16(4):433-444. |
Yin Y P. Researches on the geo-hazards triggered by Wenchuan earthquake Sichuan[J]. Journal of Engineering Geology, 2008,16(4):433-444 (in Chinese) | |
[13] |
Jibson R W, Harp E L, Michael J A. A method for producing digital probabilistic seismic landslide hazard maps[J]. Engineering Geology, 2000,58(3):271-289
doi: 10.1016/S0013-7952(00)00039-9 URL |
[14] |
Miles S B, Keefer D K. Evaluation of CAMEL: comprehensive areal model of earthquake-induced landslides[J]. Engineering Geology, 2009,104(1):1-15
doi: 10.1016/j.enggeo.2008.08.004 URL |
[15] | 李长江, 麻土华, 朱兴盛. 降雨型滑坡预报的理论、方法及应用[M]. 北京: 地质出版社, 2008. |
Li C J, Ma T H, Zhu X S. Forecasting of landslides triggered by rainfall: theory, methods & applications [M]. Beijing: Geological Publishing House, 2008 (in Chinese) | |
[16] | 兰恒星, 周成虎, 王苓涓, 等. 地理信息系统支持下的滑坡-水文耦合模型研究[J]. 岩石力学与工程学报, 2003,22(8):1309-1314. |
Lan H X, Zhou C H, Wang L J, et al. GIS based landslide stability and hydrological distribution coupled model[J]. Chinese Journal of Rock Mechanics and Engineering, 2003,22(8):1309-1314 (in Chinese) | |
[17] |
Fell R, Corominas J, Bonnard C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning[J]. Engineering Geology, 2008,102(3-4):85-98
doi: 10.1016/j.enggeo.2008.03.022 URL |
[18] | 许强. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 2010,5:596-608. |
Xu Q. The 13 August 2010 catastrophic debris flows in Sichuan province: characteristics, genetic mechanism and suggestions[J]. Journal of Engineering Geology, 2010,5:596-608 (in Chinese) | |
[19] | 唐川, 李为乐, 丁军, 等. 汶川震区映秀镇“8·14”特大泥石流灾害调查[J]. 地球科学: 中国地质大学学报, 2011,1:172-180. |
Tang C, Li W L, Ding J, et al. Field investigation and research on giant debris flow on August 14, 2010 in Yingxiu town, epicenter of Wenchuan earthquake[J]. Earth Science: Journal of China University of Geosciences, 2011,1:172-180 (in Chinese) | |
[20] | 胡凯衡, 游勇, 庄建琦, 等. 北川地震重灾区泥石流特征与减灾对策[J]. 地理科学, 2010,4(30):566-570. |
Hu K H, You Y, Zhuang J Q, et al. Characteristics and countermeasures of debris flows in Beichuan's meizoseismal area[J]. Scientia Geographic Sinica, 2010,4(30):566-570 (in Chinese) | |
[21] | 邹强, 郭晓军, 朱兴华, 等. 岷江上游“7·10”泥石流对公路的危害方式及成因[J]. 山地学报, 2014,32(6):747-753. |
Zou Q, Guo X J, Zhu X H, et al. Hazard characteristics and causes of “7·10” debris flow along highways in the upper reaches of Minjiang River[J]. Mountain Research, 2014,32(6):747-753 (in Chinese) | |
[22] | 葛永刚, 宋国虎, 郭朝旭, 等. 四川彭州龙门山镇8·18泥石流灾害特征与成灾模式分析[J]. 水利学报, 2012,43(S2):147-154. |
Ge Y G, Song G H, Guo C X, et al. Characteristics and causes of 8·18 debris flow hazards at the Longmenshan town, Pengzhou, Sichuan[J]. Journal of Hydraulic Engineering, 2012,43(S2):147-154 (in Chinese) | |
[23] |
Fan X M, Scaringi G, Korup O, et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts[J]. Review of Geophysics, 2019,57:421-503
doi: 10.1029/2018RG000626 URL |
[24] | 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报, 2011,2:145-151. |
Huang R Q. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011,2:145-151 (in Chinese) | |
[25] | 崔鹏, 庄建琦, 陈兴长, 等. 汶川地震区震后泥石流活动特征与防治对策[J]. 四川大学学报: 工程科学版, 2010,5:10-19. |
Cui P, Zhuang J Q, Chen X C, et al. Characteristics and countermeasures of debris flow in Wenchuan area after the earthquake[J]. Journal of Sichuan University: Engineering Science Edition, 2010,5:10-19 (in Chinese) | |
[26] |
Lin C W, Liu S H, Lee S Y, et al. Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan[J]. Engineering Geology, 2006,86(2-3):87-101
doi: 10.1016/j.enggeo.2006.02.010 URL |
[27] |
Tang C, Zhu J, Ding J, et al. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 2011,8(4):485-497
doi: 10.1007/s10346-011-0269-5 URL |
[28] |
Guo X, Cui P, Li Y, et al. Intensity-duration threshold of rainfall-triggered debris flows in the Wenchuan earthquake affected area, China[J]. Geomorphology, 2016,253:208-216
doi: 10.1016/j.geomorph.2015.10.009 URL |
[29] | 杨文涛. 基于遥感技术的区域滑坡灾害系统研究: 以汶川地震灾区为例[D]. 北京: 北京师范大学研究生院, 2015. |
Yang W T. Analysis of regional landslide disaster system based on remote sensing: case study in the Wenchuan earthquake affected area[D]. Beijing: Graduate School of Beijing Normal University, 2015 (in Chinese) | |
[30] |
Fan X M, Scaringi G, Domènech G, et al. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake[J]. Earth System Science Data, 2019,11(1):35-55
doi: 10.5194/essd-11-35-2019 URL |
[31] |
Hovius N, Meunier P, Lin C W, et al. Prolonged seismically induced erosion and the mass balance of a large earthquake[J]. Earth and Planetary Science Letters, 2011,304(3-4):347-355
doi: 10.1016/j.epsl.2011.02.005 URL |
[32] | 中国科学院成都地理研究所. 地震与滑坡[M]. 成都, 1978: 12. |
Chengdu Institute of Geography, Chinese Academy of Sciences. Earthquake and landslides[M]. Chengdu, 1978: 12(in Chinese) | |
[33] |
Fan X M, Domènech G, Scaringi G, et al. Spatio-temporal evolution of mass wasting after the 2008 Mw7.9 Wenchuan earthquake revealed by a detailed multi-temporal inventory[J]. Landslides, 2018,15(12):2325-2341
doi: 10.1007/s10346-018-1054-5 URL |
[34] |
Yang W T, Qi W W, Wang M, et al. Spatial and temporal analyses of post-seismic landslide changes near the epicentre of the Wenchuan earthquake[J]. Geomorphology, 2017,276:8-15
doi: 10.1016/j.geomorph.2016.10.010 URL |
[35] |
Yang W T, Qi W W, Zhou J X. Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake[J]. Ecological Indicators, 2018,89:438-444
doi: 10.1016/j.ecolind.2017.12.006 URL |
[36] | Tang C X, van Westen C J, Tanyas H, et al. Analysing post-earthquake landslide activity using multi-temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake[J]. Natural Hazards and Earth System Sciences, 2016,16:2641-2655 |
[37] |
Khan S F, Kamp U, Owen L A. Documenting five years of landsliding after the 2005 Kashmir earthquake, using repeat photography[J]. Geomorphology, 2013,197:45-55
doi: 10.1016/j.geomorph.2013.04.033 URL |
[38] |
Hu W, Scaringi G, Xu Q, et al. Internal erosion controls failure and runout of loose granular deposits: evidence from flume tests and implications for postseismic slope healing[J]. Geophysical Research Letters, 2018,45(11):5518-5527
doi: 10.1029/2018GL078030 URL |
[39] |
Marc O, Hovius N, Meunier P, et al. Transient changes of landslide rates after earthquakes[J]. Geology, 2015,43:883-886
doi: 10.1130/G36961.1 URL |
[40] |
Yang W T, Qi W W. Spatial-temporal dynamic monitoring of vegetation recovery after the Wenchuan earthquake[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(3):868-876
doi: 10.1109/JSTARS.2016.2616511 URL |
[41] | Yang W T, Qi W W, Zhou J X. Effects of precipitation and topography on vegetation recovery at landslide sites after the 2008 Wenchuan earthquake[J]. Land Degradation & Development, 2018,29(10):3355-3365 |
[42] |
Zhang F, Jin Z D, West A J, , et al. Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake[J]. Science Advances, 2019, 5(6): eaav7110
doi: 10.1126/sciadv.aav9784 URL pmid: 31249867 |
[43] |
Tolorza V, Mohr C H, Carretier S, et al. Suspended sediments in Chilean Rivers reveal low postseismic erosion after the Maule earthquake (Mw8.8) during a severe drought[J]. Journal of Geophysical Research: Earth Surface, 2019,124(6):1378-1397
doi: 10.1029/2018JF004766 URL |
[44] |
Dadson S J, Hovius N, Chen H, et al. Earthquake-triggered increase in sediment delivery from an active mountain belt[J]. Geology, 2004,32(8):733-736
doi: 10.1130/G20639.1 URL |
[45] |
Donat M G, Lowry A L, Alexander L V, et al. More extreme precipitation in the world's dry and wet regions[J]. Nature Climate Change, 2016,6:508-513
doi: 10.1038/nclimate2941 URL |
[46] | 辛鸿博, 王余庆. 岩土边坡地震崩滑及其初判准则[J]. 岩土工程学报, 1999,21(5):591-594. |
Xin H B, Wang Y Q. Earthquake induced landslide and avalanche[J]. Chinese Journal of Geotechnical Engineering, 1999,21(5):591-594 (in Chinese) | |
[47] | 于国强, 张茂省, 胡炜. 天水市“7·25”群发性山洪地质灾害发育特征及成因分析[J]. 西北地质, 2014,47(3):185-191. |
Yu G Q, Zhang M S, Hu W. Analysis on the development characteristics and hydrodynamic conditions for the massive debris flow in Tianshui[J]. Northwestern Geology, 2014,47(3):185-191 (in Chinese) | |
[48] | 邱洪志, 崔云, 孔纪名. 降雨作用下地震损伤斜坡破坏机理研究[J]. 自然灾害学报, 2018,27(3):144-152. |
Qiu H Z, Cui Y, Kong J M. Study on failure mechanism of earthquake damage slope under rainfall condition[J]. Journal of Natural Disasters, 2018,27(3):144-152 (in Chinese) | |
[49] |
段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016,12(5):374-381.
doi: 10.12006/j.issn.1673-1719.2016.039 URL |
Duan A M, Xiao Z X, Wu G X. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979-2014[J]. Climate Change Research, 2016,12(5):374-381 (in Chinese) | |
[50] |
Maurer J M, Schaefer J M, Rupper S, et al. Acceleration of ice loss across the Himalayas over the past 40 years[J]. Science Advances, 2019,5(6). DOI: 10.1126/sciadv.aav7266
doi: 10.1126/sciadv.aav9784 URL pmid: 31249867 |
[51] | 崔鹏, 苏凤环, 邹强, 等. 青藏高原山地灾害和气象灾害风险评估与减灾对策[J]. 科学通报, 2015,60(32):3067-3077. |
Cui P, Su F H, Zou Q, et al. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau[J]. Chinese Science Bulletin, 2015,60(32):3067-3077 (in Chinese) | |
[52] | 崔鹏, 贾洋, 苏凤环, 等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 2017,32(9):985-992. |
Cui P, Jia Y, Su F H, et al. Natural hazards in Tibetan Plateau and key issue for future research[J]. Bulletin of Chinese Academy of Sciences, 2017,32(9):985-992 (in Chinese) | |
[53] |
崔鹏, 陈容, 向灵芝, 等. 气候变暖背景下青藏高原山地灾害及其风险分析[J]. 气候变化研究进展, 2014,10(2):103-109.
doi: 10.3969/j.issn.1673-1719.2014.02.004 URL |
Cui P, Chen R, Xiang L Z, et al. Risk analysis of mountain hazards in Tibetan Plateau under global warming[J]. Climate Change Research, 2014,10(2):103-109 (in Chinese) | |
[54] |
Tuckett P A, Ely J C, Sole A J, et al. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-12039-2
doi: 10.1038/s41467-020-17682-8 URL pmid: 32737305 |
[55] | 姚檀栋, 秦大河, 沈永平, 等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志, 2013,35(3):179-186. |
Yao T D, Qin D H, Shen Y P, et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai Tibetan Plateau[J]. Chinese Journal of Nature, 2013,35(3):179-186 (in Chinese) | |
[56] | 秦大河. 应对气候变化加强冰冻圈灾害综合风险管理[J]. 中国减灾, 2017 (1):12-13. |
Qin D H. Strengthening integrated risk management for cryosphere disasters in response to climate change[J]. Disaster Reduction in China, 2017 (1):12-13 (in Chinese) |
[1] | 徐粒, 李倩, 王瑛, 黄靖玲, 许映军. 气候变化情景下泥石流危险性响应分析[J]. 气候变化研究进展, 2020, 16(4): 415-423. |
[2] | 王天鹏, 滕飞. 可计算一般均衡框架下的气候变化经济影响综合评估[J]. 气候变化研究进展, 2020, 16(4): 480-490. |
[3] | 李柔珂, 韩振宇, 徐影, 石英, 吴佳. 高分辨率区域气候变化降尺度数据对京津冀地区高温GDP和人口暴露度的集合预估[J]. 气候变化研究进展, 2020, 16(4): 491-504. |
[4] | 袁媛, 李国庆. 日本多主体适应气候变化框架机制及对中国的启示——基于法律政策的视角[J]. 气候变化研究进展, 2020, 16(4): 505-515. |
[5] | 田丹宇, 郑文茹. 国外应对气候变化的立法进展与启示[J]. 气候变化研究进展, 2020, 16(4): 526-534. |
[6] | 张奇谋,王润,姜彤,陈松生. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3): 276-286. |
[7] | 黄鹤楼,邹旭恺,丁烨毅,陈鲜艳,石英,肖风劲. 气候变化对宁波四明山人体舒适度的影响[J]. 气候变化研究进展, 2020, 16(3): 316-324. |
[8] | 张小全, 谢茜, 曾楠. 基于自然的气候变化解决方案[J]. 气候变化研究进展, 2020, 16(3): 336-344. |
[9] | 樊星,王际杰,王田,高翔. 马德里气候大会盘点及全球气候治理展望[J]. 气候变化研究进展, 2020, 16(3): 367-372. |
[10] | 王朋岭,黄磊,巢清尘,袁佳双,陈超. IPCC SROCC的主要结论和启示[J]. 气候变化研究进展, 2020, 16(2): 133-142. |
[11] | 成里京. SROCC:海洋热含量变化评估[J]. 气候变化研究进展, 2020, 16(2): 172-181. |
[12] | 蔡榕硕,韩志强,杨正先. 海洋的变化及其对生态系统和人类社会的影响、风险及应对[J]. 气候变化研究进展, 2020, 16(2): 182-193. |
[13] | 翁宇威,蔡闻佳,王灿. 共享社会经济路径(SSPs)的应用与展望[J]. 气候变化研究进展, 2020, 16(2): 215-222. |
[14] | 黄萌田, 周佰铨, 翟盘茂. 极端天气气候事件变化对荒漠化、土地退化和粮食安全的影响[J]. 气候变化研究进展, 2020, 16(1): 17-27. |
[15] | 吴建国, 翟盘茂. 关于气候变化与荒漠化关系的新认知[J]. 气候变化研究进展, 2020, 16(1): 28-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|