Please wait a minute...
 
气候变化研究进展  2019, Vol. 15 Issue (2): 107-118    DOI: 10.12006/j.issn.1673-1719.2018.116
     气候系统变化 本期目录 | 过刊浏览 | 高级检索 |
NUIST地球系统模式模拟热带气旋活动的气候特征分析
吴启蒙,吴立广(),曹剑
南京信息工程大学太平洋台风研究中心,南京 210044
Analysis of climate characteristics of tropical cyclone activities simulated by the NUIST Earth system model
Qi-Meng WU,Li-Guang WU(),Jian CAO
Nanjing University of Information Science &Technology, Nanjing 210044, China
下载:  HTML ( 16 )   PDF (22589KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用恒定的现代外部强迫驱动第一版NUIST地球系统模式,进行了40年全球热带气旋活动模拟,分析了热带气旋活动的气候特征,并与1977—2016年观测资料对比分析。结果表明:该模式能够模拟出与热带气旋类似的结构特征,在热带气旋活动活跃的海区,模拟热带气旋生成的空间分布和影响范围与观测基本一致,但是各个海区热带气旋的生成频数与观测还存在差异。除了北印度洋海区,各个海区热带气旋生成频数的季节变化与观测相似。模式在西北太平洋海区模拟结果最好,能模拟出热带气旋的生成范围和盛行路径;在北印度洋地区模拟结果较差,北印度洋海区的相对涡度模拟与观测存在较大差异,这是模式未能模拟出北印度洋热带气旋双峰特征的主要原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴启蒙
吴立广
曹剑
关键词:  热带气旋  活动特征  NUIST地球系统模式(NESM)  大尺度环境场    
Abstract: 

By using the NUIST Earth system model v1 (NESM v1) with a constant external forcing, 40-year global tropical cyclone activities were simulated, and the simulation data were compared with the observations (1977-2016). The results show that NESM v1 can simulate vortex structure similar to tropical cyclones in the area where tropical cyclones are active, The spatial distribution and impact range of simulated tropical cyclones are basically consistent with the observations, but the numbers of tropical cyclones in various areas are different from the observations. In addition to North Indian Ocean, the numbers of tropical cyclones in different seasons are similar to the observations. The model has the best simulation in the Northwest Pacific Ocean, it can simulate the formation area and prevailing path of tropical cyclones. The simulation results in the North Indian Ocean are poor. NESM model simulates relative vorticity different from observation, so it cannot simulate the bimodal characteristic in North Indian.

Key words:  Tropical cyclone    Activity characteristic    NUIST Earth system model (NESM)    Large-scale environmental field
收稿日期:  2018-08-21      修回日期:  2018-11-13           出版日期:  2019-03-30      发布日期:  2019-03-30      期的出版日期:  2019-03-30
基金资助: 国家重点基础研究计划(973计划项目)(2015CB452803);国家自然科学基金项目(41730961,41675051)
作者简介:  吴启蒙,男,硕士研究生,20161201085@nuist.edu.cn
引用本文:    
吴启蒙,吴立广,曹剑. NUIST地球系统模式模拟热带气旋活动的气候特征分析[J]. 气候变化研究进展, 2019, 15(2): 107-118.
Qi-Meng WU,Li-Guang WU,Jian CAO. Analysis of climate characteristics of tropical cyclone activities simulated by the NUIST Earth system model. Climate Change Research, 2019, 15(2): 107-118.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.116  或          http://www.climatechange.cn/CN/Y2019/V15/I2/107
图1  模拟的热带气旋结构特征(a) 850 hPa风场和海平面气压场,(b)沿热带气旋中心横截面的温度距平和经向风结构
图2  气候平均的海表面温度场(a)模拟,(b)观测,(c)偏差
图3  气候平均的850 hPa风场(a)模拟,(b)观测,(c)偏差
图4  气候平均的850 hPa相对涡度(a)模拟,(b)观测,(c)偏差
图5  气候平均的200 hPa风场(a)模拟,(b)观测,(c)偏差
图6  气候平均的垂直切变(a)模拟,(b)观测,(c)偏差
图7  热带气旋路径分布与各海域热带气旋的年平均个数(a)模拟,(b)观测
项目全球NIOWNPENPNATSIOSPO
观测/(个/年)80.63.724.816.512.814.69.5
模拟/(个/年)76.210.623.38.45.113.113.9
绝对误差/%-4.46.9-1.5-8.1-7.7-1.54.4
相对误差/%-5.5186.0-6.1-49.1-60.2-10.346.3
表1  全球各个海区年平均热带气旋数量统计(观测:1977—2016年,模拟:40年)
图8  热带气旋生成位置分布与各海域热带气旋的年平均个数(a)模拟,(b)观测,(c)偏差
图9  各大海域热带气旋各月生成频数
图10  西北太平洋热带气旋的模拟生成位置(a)与路径分布(c),观测生成位置(b)与路径分布(d)
图11  850 hPa、500 hPa和200 hPa模拟(a, c, e)与观测(b, d, f) 7—9月平均风场
图12  北印度洋模拟和观测海温(a)、垂直切变(b)和850 hPa相对涡度(c)的季节变化
[1] Manabe S, Leith Holloway J J, Stone H M. Tropical circulation in a time-integration of a global model of the atmosphere[J]. Journal of the Atmospheric Sciences, 2010, 27(27): 580-613
[2] Vitart F, Stockdale T N.Seasonal forecasting of tropical storms using coupled GCM integrations[J]. Monthly Weather Review, 2000, 129(129): 2521-2527
doi: 10.1175/1520-0493(2001)1292.0.CO;2
[3] Murakami H, Sugi M, Kitoh A.Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCM[J]. Journal of Climate, 2012, 25(9): 3237-3260
doi: 10.1175/JCLI-D-11-00415.1
[4] Zhao M, Held I M, Lin S J, et al. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM[J]. Journal of Climate, 2009, 22(24): 6653-6678
doi: 10.1175/2009JCLI3049.1
[5] Cao J, Wang B, Xiang B, et al. Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM)[J]. Advances in Atmospheric Sciences, 2015, 32(5): 585-600
doi: 10.1007/s00376-014-4200-6
[6] Cao J, Wang B, Yang Y M, et al. The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation[J]. Geoscientific Model Development Discussions, 2017: 1-53
doi: 10.5194/gmd-11-2975-2018
[7] Fouquart Y J, Bonnel B.Computations of solar heating of the Earth’s atmosphere: a new parameterization[J]. Beitraege zur Physik der Atmospahere, 1980, 53: 35-62
[8] Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research Atmospheres, 1997, 102(D14): 16663-16682
doi: 10.1029/97JD00237
[9] Lohmann U, Roeckner E.Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model[J]. Climate Dynamics, 1996, 12(8): 557-572
doi: 10.1007/BF00207939
[10] Knapp K R, Kruk M C, Levinson D H, et al. The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone data[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363-376
doi: 10.1175/2009BAMS2755.1
[11] Hawkins H F, Rubsam D T. Hurricane Hilda, 1964[J]. Monthly Weather Review, 1968, 96(7): 428
doi: 10.1175/1520-0493(1968)096<0428:HH>2.0.CO;2
[12] Frank W M.A Composite analysis of the core of a mature hurricane[J]. Monthly Weather Review, 1984, 112(12): 2401-2420
doi: 10.1175/1520-0493(1984)1122.0.CO;2
[13] Jha C S.Improving the detection and tracking of tropical cyclones in atmospheric general circulation models[J]. Weather & Forecasting, 2002, 17(6): 1152-1162
doi: 10.1175/1520-0434(2002)0172.0.CO;2
[14] Yoshimura J, Sugi M.Tropical cyclone climatology in a high-resolution AGCM impacts of SST warming and CO<sub>2</sub> increase[J]. Scientific Online Letters on the Atmosphere, 2005, 1(3): 133-136
doi: 10.2151/sola.2005-035
[15] Strachan J, Vidale P L, Hodges K, et al. Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution[J]. Journal of Climate, 2013, 26(1): 133-152
doi: 10.1175/JCLI-D-12-00012.1
[16] 曹剑, 吴立广, 潘维玉. 2006年7—9月西北太平洋热带气旋季节活动的数值模拟[J]. 大气科学学报, 2012, 35(2): 148-162
[17] Briegel L M.Large-scale influences on tropical cyclogenesis in the Western North Pacific[J]. Monthly Weather Review, 1997, 125(7): 1397
doi: 10.1175/1520-0493(1997)1252.0.CO;2
[18] Ritchie E A, Holland G J.Large-scale patterns associated with tropical cyclogenesis in the Western Pacific[J]. Monthly Weather Review, 2010, 127(9): 2027-2043
[19] Molinari J, Vollaro D.What percentage of Western North Pacific tropical cyclones form within the monsoon trough[J]. Monthly Weather Review, 2013, 141(2): 499-505
doi: 10.1175/MWR-D-12-00165.1
[20] Chia H H, Ropelewski C F.The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific[J]. Journal of Climate, 2002, 15(20): 2934-2944
doi: 10.1175/1520-0442(2002)015&lt;2934:TIVITG&gt;2.0.CO;2
[21] Chen T C, Wang S Y, Yen M C.Interannual variation of the tropical cyclone activity over the Western North Pacific[J]. Journal of Climate, 2005, 19(19): 5709
doi: 10.1007/s00703-005-0126-y
[22] Harr P A, Elsberry R L.Large-scale circulation variability over the tropical Western North Pacific. Part I: spatial patterns and tropical cyclone characteristics[J]. Monthly Weather Review, 1995, 123(123): 1247
doi: 10.1175/1520-0493(1995)123&lt;1247:LSCVOT&gt;2.0.CO;2
[23] Wu L, Wen Z, Huang R, et al. Possible linkage between the monsoon trough variability and the tropical cyclone activity over the Western North Pacific[J]. Monthly Weather Review, 2012, 140(1): 140-150
doi: 10.1175/MWR-D-11-00078.1
[24] 张霏, 吴立广, 任福民, 等. 孟加拉湾和阿拉伯海热带气旋活动双峰型差异及可能成因[J]. 热带气象学报, 2016, 32(3): 399-406
doi: 10.16032/j.issn.1004-4965.2016.03.011
[25] Gray W M.Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96: 669-700
doi: 10.1175/1520-0493(1968)096&lt;0669:GVOTOO&gt;2.0.CO;2
[26] Zhao H, Wu L, Zhou W.Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the Western North Pacific[J]. Advances in Atmospheric Sciences, 2010, 27(6): 1361-1371
doi: 10.1007/s00376-010-9161-9
[1] 方珂,余锦华. 海表温度差异对1998及2016年8月西北太平洋热带气旋生成频数的影响[J]. 气候变化研究进展, 2019, 15(2): 119-129.
[2] 毕鑫鑫, 陈光华, 周伟灿, 沈新勇, 曹西. 西北太平洋热带气旋达到不同强度时所处位置的变化趋势研究[J]. 气候变化研究进展, 2017, 13(1): 31-40.
[3] 何洁琳 管兆勇 钱代丽 廖雪萍. 21世纪增暖情景下西北太平洋热带气旋频数的预估[J]. 气候变化研究进展, 2012, 8(3): 190-197.
[4] 胡娅敏;宋丽莉. 登陆中国热带气旋台风季参数的气候特征分析[J]. 气候变化研究进展, 2009, 5(02): 90-094.
[5] 王小玲 任福民. 1957-2004年影响我国的强热带气旋频数和强度变化[J]. 气候变化研究进展, 2007, 03(06): 345-349.
[6] 任福民 王小玲 董文杰. 登陆中国初、终热带气旋的变化[J]. 气候变化研究进展, 2007, 03(04): 224-228.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备10018055-1号
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn