Please wait a minute...
 
气候变化研究进展  2015, Vol. 11 Issue (4): 270-280    DOI: 10.3969/j.issn.1673-1719.2015.04.006
  气候系统变化 本期目录 | 过刊浏览 | 高级检索 |
长三角临安本底站PM1中各主要化学成分质量-粒度分布与变化
张轶雯1,张小曳1,张养梅1,马千里2,沈小静1,孙俊英1,3
1 中国气象科学研究院,北京 100081;
2 浙江省临安大气本底站,临安 311307;
3 中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室,兰州 730000
Mass-Size Distributions of Chemical Compositions in PM1 in Lin’an Regional Background Site of Yangtze River Delta, China
Zhang Yiwen1, Zhang Xiaoye1, Zhang Yangmei1, Ma Qianli2, Shen Xiaojing1, Sun Junying1, 3
1 Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China;
2 Lin’an Regional Air Background Station in Zhejiang Province, Lin’an 311307, China;
3 State Key Laboratory of Cryospheric Sciences, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
下载:  PDF (1742KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 2013年夏季至2014年春季在中国长三角区域的临安大气本底站利用气溶胶质谱仪(AMS)对PM1中主要化学成分质量浓度以及质量-粒度分布进行观测,发现观测期间PM1的平均浓度约为53 mg/m3,其中有机物是最主要的成分(约占47%),其次为硫酸盐(23%)、硝酸盐(16%)、铵盐(12%)和氯化物(1.2%)。PM1平均浓度冬季最高(84 mg/m3),秋季最低(38 mg/m3)。冬季污染时段PM1浓度较清洁时段高24倍,其中硝酸盐浓度冬季升高最显著,这与冬季燃煤排放增加和低温有利其形成有密切联系。不同化学成分中,有机物粒度分布峰值粒径最小,硫酸盐最大。冬季各化学成分的峰值粒径在4个季节中最大(约600 nm),可能由于污染物积聚时间较长。夏季各成分峰值粒径最小(400~500 nm),且在夏季清洁时段浓度较其他季节高,局地产生的新粒子贡献可能很重要,伴随着光化学烟雾的气溶胶和臭氧污染在这些区域升高值得进一步关注。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张轶雯
张小曳
张养梅
马千里
沈小静
孙俊英
关键词:  PM1  化学成分  质量-粒度分布  季节变化    
Abstract: The mass concentrations and mass-size distributions of the main chemical compositions in PM1 were observed from summer of 2013 to spring of 2014 in Lin’an regional background site of the Yangtze River Delta (YRD). The annual average mass concentration of PM1 was 53 mg/m3. Organics was the dominant composition, which accounted for 47% of PM1 , followed by sulfate (23%), nitrate (16%), ammonium (12%) and chloride (1.2%). The maximum mass concentration of PM1 was found in winter (84 mg/m3) and the minimum was in fall (38 mg/m3). The mass concentration of PM1 during polluted days was 24 times higher than that during clean days in winter. The nitrate increased most significantly in winter among all species as a result of increased emission of coal combustion and low temperature. The peak size of organics was lower than other compositions and the peak size of the sulfate was the largest. The peak sizes of all kinds of compositions in winter (~600 nm) were the maximum possibly owing to the accumulation of pollutants. The peak sizes of compositions in summer were lower than other seasons (400-500 nm). The averaged mass concentration of PM1 during clean days in summer was higher than that in other seasons, which was contributed by the regional new particles. Moreover, the aerosols accompanied with the photochemical smog and the ozone pollution in this region should be concerned further.
Key words:  PM1    chemical compositions    mass-size distribution    seasonal variation
收稿日期:  2015-03-23      修回日期:  2015-05-12           出版日期:  2015-07-31      发布日期:  2015-07-31      期的出版日期:  2015-07-31
基金资助: 

973计划项目;语义支撑下以原油市场为例的Web知识发现关键方法及实证研究

通讯作者:  张轶雯    E-mail:  zhangyw901228@126.com
引用本文:    
张轶雯, 张小曳, 张养梅, 马千里, 沈小静, 孙俊英. 长三角临安本底站PM1中各主要化学成分质量-粒度分布与变化[J]. 气候变化研究进展, 2015, 11(4): 270-280.
Zhang Yiwen, Zhang Xiaoye, Zhang Yangmei, Ma Qianli, Shen Xiaojing, Sun Junying. Mass-Size Distributions of Chemical Compositions in PM1 in Lin’an Regional Background Site of Yangtze River Delta, China. Climate Change Research, 2015, 11(4): 270-280.
链接本文:  
http://www.climatechange.cn/CN/10.3969/j.issn.1673-1719.2015.04.006  或          http://www.climatechange.cn/CN/Y2015/V11/I4/270
[1] 车浩驰, 王亚强, 杨筠, 沈小静, 张璐, 王德众. 泰山PM10及其中化学成分变化特征[J]. 气候变化研究进展, 2014, 10(6): 399-407.
[2] 丁海燕;郑祚芳;刘伟东. 北京1951-2008年升温趋势和季节变化[J]. 气候变化研究进展, 2010, 6(03): 187-191.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
[10] Zhuang Guiyang. Energy Subsidy Policies and Their Reform: Providing economic incentives for climate change mitigation[J]. Climate Change Research, 2007, 03(00): 92 -96 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备10018055-1号
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn