气候变化研究进展 ›› 2022, Vol. 18 ›› Issue (1): 31-43.doi: 10.12006/j.issn.1673-1719.2020.253

• 气候系统变化 • 上一篇    下一篇

NEX-GDDP降尺度数据对中国极端降水指数模拟能力的评估

王倩之(), 刘凯(), 汪明   

  1. 北京师范大学国家安全与应急管理学院,北京 100875
  • 收稿日期:2020-11-02 修回日期:2021-02-02 出版日期:2022-01-30 发布日期:2022-01-26
  • 通讯作者: 刘凯
  • 作者简介:王倩之,女,硕士研究生, wangxyz66@126.com
  • 基金资助:
    国家重点研发计划资助项目“重大自然灾害评估、救助与恢复重建技术研究与示范”(2017YFC1502901)

Evaluation of extreme precipitation indices performance based on NEX-GDDP downscaling data over China

WANG Qian-Zhi(), LIU Kai(), WANG Ming   

  1. School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
  • Received:2020-11-02 Revised:2021-02-02 Online:2022-01-30 Published:2022-01-26
  • Contact: LIU Kai

摘要:

利用1986—2005年中国地面气象台站观测的格点化逐日降水数据(CN05.1)评估了NASA高分辨率降尺度逐日数据集NEX-GDDP中21个全球气候模式在0.25˚(约25 km×25 km)分辨率下对中国极端降水的模拟能力。选取年最大日降水量(RX1D)、年最大5 d降水量(RX5D)、湿日总降水量(PRCPTOT)、湿日平均降水强度(SDII)、强降水总量(R95p)和极端强降水总量(R99p)这6个强度指数,暴雨日数(R50)、强降水日数(R95T)、极端强降水日数(R99T)、最大连续湿日(CWD)、最大连续干日(CDD)这5个频率指数作为评价指数开展评估,结果表明:(1)各模式很难捕捉到极端降水指数年际变化线性趋势,表现最好的模式GFDL-ESM2G也仅有45%的指标显示出了与观测的正相关性,而且很弱。(2)各模式对于气候态均值的模拟效果较好,其中,CSIRO-MK3-6-0、NorESM1-M、MRI-CGCM3对强度指数模拟较优,inmcm4、IPSL-CM5A-MR、MIROC5对频率指数模拟较优,综合表现最优的3个模式为CSIRO-MK3-6-0,inmcm4、MRI-CGCM3。(3)综合考虑各模式对11个极端降水指数在气候态均值和年际变化线性趋势模拟能力的评估结果来看,GFDL-ESM2G、CSIRO-MK3-6-0、ACCESS1-0显示了相对较高的综合模拟能力。

关键词: NEX-GDDP, 中国, 极端降水, 模式评估

Abstract:

Taking the grid daily precipitation data (CN05.1) observed by China surface meteorological stations from 1986 to 2005 as the observation data, the performance of 21 global climate models were evaluated based on the high-resolution downscaling daily dataset NASA Earth Exchange/Global Daily Downscaled Projections (NEX-GDDP) with the resolution of 0.25° (~25 km×25 km). Six intensity indices, annual maximum daily precipitation (RX1D), the largest consecutive precipitation for five days (RX5D), total wet-day precipitation (PRCPTOT), simple daily precipitation intensity (SDII), cumulative precipitation in the 95 and 99 quantiles (R95p, R99p), and five frequency indices, heavy rain days (R50), cumulative precipitation days in the 95 and 99 quantiles (R95T, R99T), consecutive wet days (CWD), consecutive dry days (CDD), were selected for evaluation. The results show that: (1) It is difficult for models to capture the linear variation of extreme precipitation indices. Even for the best performance model, GFDL-ESM2G, only 45% of the simulated indices present the positive correlation with the observation. (2) The performance of models on the climatological means is better. CSIRO-MK3-6-0, NorESM1-M and MRI-CGCM3 have better performance on the intensity indices. The inmcm4, IPSL-CM5A-MR and MIROC5 have better performance on the frequency indices. The three best synthetical performance models are CSIRO-MK3-6-0, inmcm4 and MRI-CGCM3. (3) Considering the performance of 11 extreme precipitation indices in the climatological means and trend, GFDL-ESM2G, CSIRO-MK3-6-0 and ACCESS1-0 have relatively higher performance.

Key words: NEX-GDDP, China, Extreme precipitation, Models evaluation

京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn