Please wait a minute...
 
气候变化研究进展  2019, Vol. 15 Issue (4): 343-351    DOI: 10.12006/j.issn.1673-1719.2018.157
  气候系统变化 本期目录 | 过刊浏览 | 高级检索 |
模式内部变率引起的1.5℃和2℃升温阈值出现时间模拟的不确定性研究
季涤非1,刘利1(),李立娟2,孙超1,于馨竹1,李锐喆1,张诚1,王斌1,2
1 清华大学地球系统科学系,北京 100084
2 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
Uncertainties in the simulation of 1.5℃ and 2℃warming threshold-crossing time arising from model internal variability based on CMIP5 models
Di-Fei JI1,Li LIU1(),Li-Juan LI2,Chao SUN1,Xin-Zhu YU1,Rui-Zhe LI1,Cheng ZHANG1,Bin WANG1,2
1 Department of Earth System Science, Tsinghua University, Beijing 100084, China
2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
下载:  HTML ( 11 )   PDF (3063KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

模式内部变率是模拟结果不确定性的重要来源,然而它对于1.5℃和2℃升温阈值出现时间不确定性的影响尚不清楚。因此,基于耦合模式比较计划第五阶段(CMIP5)的多模式数据研究了模式内部变率对1.5℃和2℃升温阈值出现时间不确定性的影响以及对未来排放情景的敏感性。结果表明,模式内部变率对升温阈值出现时间模拟的影响与外强迫的影响相当,单个模式内部不同成员达到全球平均1.5℃或2℃增温的年份相差2~12年;其影响具有明显的空间差异,影响极大值出现在欧亚大陆以北洋面、白令海峡周围区域、北美东北部及其与格陵兰岛之间的海域、南半球高纬地区等;低排放情景下模式内部变率的影响大于高排放情景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季涤非
刘利
李立娟
孙超
于馨竹
李锐喆
张诚
王斌
关键词:  CMIP5  1.5℃和2℃升温  出现时间  模式内部变率    
Abstract: 

Model internal variability has been recognized as an important source of uncertainties of climate simulation results. However, the impact of model internal variability on the uncertainties in the simulation of 1.5℃ and 2℃ warming threshold-crossing time has not been explored to date. In this paper, such impact and the corresponding sensitivity to different future emission scenarios are investigated based on the outputs of Coupled Model Intercomparison Project Phase5 (CMIP5) models. The results show that the effect of internal variability on uncertainties in the simulation of threshold-crossing time is equivalent to that of external forcing. The difference between the threshold-crossing time of model members reaching 1.5℃ or 2℃ global warming is 2-12 years. The influence of internal variability has a clear spatial distribution. Maximum uncertainties are observed at the ocean northern of Eurasia, the area around the Bering Strait, the northeastern North America and the ocean between it and Greenland, and the high latitudes in the Southern Hemisphere. Model internal variability causes greater uncertainties in the low emission scenario than the high emission scenario.

Key words:  Coupled Model Intercomparison Project Phase5 (CMIP5)    1.5℃ and 2℃ warming    Threshold-crossing time    Model internal variability
收稿日期:  2018-11-09      修回日期:  2019-01-03           出版日期:  2019-07-30      发布日期:  2019-07-30      期的出版日期:  2019-07-30
基金资助: 国家重点研发计划项目(2017YFC1501903)
通讯作者:  刘利    E-mail:  liuli-cess@mail.tsinghua.edu.cn
作者简介:  季涤非,女,硕士研究生
引用本文:    
季涤非,刘利,李立娟,孙超,于馨竹,李锐喆,张诚,王斌. 模式内部变率引起的1.5℃和2℃升温阈值出现时间模拟的不确定性研究[J]. 气候变化研究进展, 2019, 15(4): 343-351.
Di-Fei JI,Li LIU,Li-Juan LI,Chao SUN,Xin-Zhu YU,Rui-Zhe LI,Cheng ZHANG,Bin WANG. Uncertainties in the simulation of 1.5℃ and 2℃warming threshold-crossing time arising from model internal variability based on CMIP5 models. Climate Change Research, 2019, 15(4): 343-351.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.157  或          http://www.climatechange.cn/CN/Y2019/V15/I4/343
表1  所用模式和成员数目
图1  CanESM2模式(所有成员的平均值)在RCP4.5排放情景下2℃增温出现时间的空间分布 注:白色区域表示到2100年模式仍未达到2℃增温;a:欧亚大陆北部,b:北美西部,c:中西伯利亚,d:青藏高原。
表2  区域名称及范围
表3  RCP4.5情景下单个模式所有成员在不同区域最早、最晚达到1.5℃增温的年份以及标准差
表4  RCP4.5情景下单个模式所有成员在不同区域最早、最晚达到2℃增温的年份以及标准差
图2  CMIP5的7个模式所有成员在RCP4.5排放情景下达到1.5℃增温年份的标准差的空间分布 注:白色区域表示到2100年模式仍未达到1.5℃增温。
表5  模式所有成员在4个排放情景下达到全球1.5℃增温年份的标准差和极差
表6  模式所有成员在4个排放情景下达到全球2℃增温年份的标准差和极差
[1] IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013
[2] UNFCCC. Communications received from parties in relation to the listing in the chapeau of the Copenhagen Accord [EB/OL]. 2010 [ 2012- 07- 05].
[3] Randalls S . History of the 2℃ climate target[J]. Wiley Interdisciplinary Reviews Climate Change, 2010,1(4):598-605
[4] Arora V K, Scinocca J F, Boer G J , et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases[J]. Geophysical Research Letters, 2011,38(5):387-404
[5] Baek H J, Lee J, Lee H S , et al. Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways[J]. Asia-pacific Journal of Atmospheric Sciences, 2013,49(5):603-618
[6] Meehl G A, Washington W M, Arblaster J M , et al. Climate change projections in CESM1 (CAM5) compared to CCSM4[J]. Journal of Climate, 2013,26(17):6287-6308
[7] Wang Z, Lin L, Zhang X , et al. Scenario dependence of future changes in climate extremes under 1.5 ℃ and 2 ℃ global warming[J]. Scientific Reports, 2017,7:46432
[8] Hawkins E, Sutton R . The potential to narrow uncertainty in projections of regional precipitation change[J]. Climate Dynamics, 2011,37(1-2):407-418
[9] Deser C, Phillips A, Bourdette V , et al. Uncertainty in climate change projections: the role of internal variability[J]. Climate Dynamics, 2012,38(3-4):527-546
[10] Dai A, Bloecker C E . Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models[J]. Climate Dynamics, 2018 ( 365):1-18
[11] Wittenberg A T . Are historical records sufficient to constrain ENSO simulations?[J]. Geophysical Research Letters, 2009,36(12):L12702
[12] Deser C, Knutti R, Solomon S , et al. Communication of the role of natural variability in future North American climate[J]. Nature Climate Change, 2012,2(11):775-779
[13] Deser C, Phillips A S, Alexander M A , et al. Projecting North American climate over the next 50 years: uncertainty due to internal variability[J]. Journal of Climate, 2013,27(6):2271-2296
[14] Kang S M, Deser C, Polvani L M . Uncertainty in climate change projections of the hadley circulation: the role of internal variability[J]. Journal of Climate, 2013,26(19):7541-7554
[15] Shepherd T G . Atmospheric circulation as a source of uncertainty in climate change projections[J]. Nature Geoscience, 2014,7(10):703-708
[16] Schindler A, Toreti A, Scoccimarro E , et al. On the internal variability of simulated daily precipitation[J]. Journal of Climate, 2015,28(9):3264-3630
[17] Woldemeskel F M, Sharma A, Sivakumar B , et al. Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models[J]. Journal of Geophysical Research Atmospheres, 2016,121(1):3-17
[18] Zheng X T, Hui C, Yeh S W . Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability[J]. Climate Dynamics, 2018,50:1-17
[19] Sun C, Liu L, Li L , et al. Uncertainties in simulated El Niño-Southern Oscillation arising from internal climate variability[J]. Atmospheric Science Letters, 2018,19:805
[20] Hawkins E, Sutton R . The potential to narrow uncertainty in regional climate predictions[J]. Bulletin of the American Meteorological Society, 2009,90(8):333-337
[21] 张莉, 丁一汇, 吴统文 , 等. CMIP5模式对21世纪全球和中国年平均地表气温变化和2℃升温阈值的预估[J]. 气象学报, 2013,71(6):1047-1060.
doi: 10.11676/qxxb2013.087
Zhang L, Ding Y H, Wu T W , et al. The 21st century annual mean surface air temperature change and the 2℃warming threshold over the globe and China as projected by the CMIP5 models[J]. Acta Meteorologica Sinica, 2013,71(6):1047-1060 (in Chinese)
doi: 10.11676/qxxb2013.087
[22] Chen X, Zhou T . Uncertainty in crossing time of 2℃warming threshold over China[J]. Science Bulletin, 2016 (18):1451-1459
[23] Jiang D, Sui Y, Lang X . Timing and associated climate change of a 2℃ global warming[J]. International Journal of Climatology, 2016,36(14):4512-4522
[24] 周梦子, 周广胜, 吕晓敏 , 等. 基于CMIP5耦合气候模式的1.5℃和2℃升温阈值出现时间研究[J]. 气候变化研究进展, 2018,14(3):221-227.
Zhou M Z, Zhou G S, Lyu X M , et al. CMIP5-based threshold-crossing times of 1.5℃ and 2℃ global warming above pre-industrial levels[J]. Advances in Climate Change Research, 2018,14(3):221-227 (in Chinese)
[25] Wang X, Jiang D, Lang X . Climate change of 4℃ global warming above pre-industrial levels[J]. Advances in Atmospheric Sciences, 2018,35(7):757-770
[26] Zhao L, Xu J, Powell A M , et al. Uncertainties of the global-to-regional temperature and precipitation simulations in CMIP5 models for past and future 100 years[J]. Theoretical & Applied Climatology, 2015,122(1-2):259-270
[27] Kay J E, Deser C, Phillips A , et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability[J]. Bulletin of the American Meteorological Society, 2015,96(8):1333-1349
[1] 王胜,许红梅,王德燕,宋阿伟,段春锋,何冬燕. 基于CMIP5模式安徽省植被净初级生产力预估[J]. 气候变化研究进展, 2018, 14(3): 266-274.
[2] 江晓菲,李伟,游庆龙. 中国未来极端气温变化的概率预估及其不确定性[J]. 气候变化研究进展, 2018, 14(3): 228-236.
[3] 周梦子,周广胜,吕晓敏,周莉,汲玉河. 基于CMIP5耦合气候模式的1.5℃和2℃升温阈值出现时间研究[J]. 气候变化研究进展, 2018, 14(3): 221-227.
[4] 朱再春, 刘永稳, 刘祯, 朴世龙. CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估[J]. 气候变化研究进展, 2018, 14(1): 31-39.
[5] 徐影 周波涛 吴婕 韩振宇 张永香 吴佳. 1.5~4℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017, 13(4): 306-315.
[6] 吴晶 王宝鉴 杨艳芬 常燕 陈林 杨建才 刘新伟. CMIP3与CMIP5模式对中国西北干旱区气温和降水的模拟能力比较[J]. 气候变化研究进展, 2017, 13(3): 198-212.
[7] 蒋帅, 江志红, 李伟, 沈雨辰. CMIP5 模式对中国极端气温及其变化趋势的模拟评估[J]. 气候变化研究进展, 2017, 13(1): 11-24.
[8] 朱清照, 闻新宇. 中国CMIP5模式对未来北极海冰的模拟偏差[J]. 气候变化研究进展, 2016, 12(4): 276-285.
[9] 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1): 10-19.
[10] 程志刚, 张渊萌, 徐影. 基于CMIP5模式集合预估21世纪中国气候带变迁趋势[J]. 气候变化研究进展, 2015, 11(2): 93-101.
[11] 陈晓晨, 徐影, 许崇海, 姚遥. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3): 217-225.
[12] 郭彦, 董文杰, 任福民, 赵宗慈, 黄建斌. CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较[J]. 气候变化研究进展, 2013, 9(3): 181-186.
[13] 左金清, 李维京, 任宏利. CMIP5模式对北极涛动的模拟评估[J]. 气候变化研究进展, 2013, 9(3): 157-164.
[14] 朱献, 董文杰, 郭彦. CMIP3及CMIP5模式对冬季和春季北极涛动变率模拟的比较[J]. 气候变化研究进展, 2013, 9(3): 165-172.
[15] 朱献, 董文杰. CMIP5耦合模式对北半球3—4月积雪面积的历史模拟和未来预估[J]. 气候变化研究进展, 2013, 9(3): 173-180.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn