Please wait a minute...
 
气候变化研究进展  2018, Vol. 14 Issue (6): 602-612    DOI: 10.12006/j.issn.1673-1719.2018.070
  温室气体排放 本期目录 | 过刊浏览 | 高级检索 |
卫星高光谱大气CO2探测精度验证研究进展
张兴赢1,孟晓阳2,周敏强3,白文广1,周丽花4,胡玥明2,余骁5
1 中国气象局国家卫星气象中心,北京 100081
2 中国气象科学研究院,北京 100081
3 比利时高层大气物理所,布鲁塞尔 1180
4 北京师范大学全球变化与地球系统科学研究院,北京 100081
5 成都信息工程大学,成都 610000
Review of the validation of atmospheric CO2 from satellite hyper spectral remote sensing
Xing-Ying ZHANG1,Xiao-Yang MENG2,Min-Qiang ZHOU3,Wen-Guang BAI1,Li-Hua ZHOU4,Yue-Ming HU2,Xiao YU5
1 National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
2 Chinese Academy of Meteorological Sciences, Beijing 100081, China
3 Royal Belgian Institute for Space Aeronomy, Brussels 1180, Belgium
4 College of Global Change and Earth System Sciences, Beijing Normal University, Beijing 100081, China
5 Chengdu University of Information Technology, Chengdu 610000, China
下载:  HTML ( 3 )   PDF (2668KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

卫星高光谱大气CO2遥感探测对全球气候变化研究意义重大,卫星CO2反演产品的地基观测验证是获得产品精度评价、发现算法可适用范围和局限性的重要环节,因此地基高光谱CO2的观测验证研究对提高卫星产品定量精度至关重要。本文综述了当前国际上大气CO2探测卫星的研制进展,短波红外大气CO2的反演方法进展,重点阐述了地基高光谱CO2探测技术进展及其对卫星大气CO2的定量探测精度验证方法和技术研究进展,并对该研究领域未来的发展提出展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张兴赢
孟晓阳
周敏强
白文广
周丽花
胡玥明
余骁
关键词:  卫星大气CO2探测  地基高光谱遥感  产品精度验证    
Abstract: 

In the last decade, several satellites have been launched for monitoring the carbon dioxide in the atmosphere. The validation of the satellite CO2 products can evaluate the product accuracy, find the scope and limitations of application of the algorithm, which plays an important role in improving the quality of the satellite products. To better understand the research status, a review about the research methods of remote sensing of atmospheric CO2 and the validation progress between satellite products and ground-based station was carried out, and the future development of the research field was also prospected in this paper.

Key words:  Satellite remote sensing of CO2    Ground-based remote sensing    Validation
收稿日期:  2018-05-11      修回日期:  2018-07-13           出版日期:  2018-11-30      发布日期:  2018-11-30      期的出版日期:  2018-11-30
基金资助: 国家重点研发计划(2017YFB0504000);国家重点研发计划(2017YFB0504001);国家重点研发计划(2016YFB0500705);国家自然科学基金面上项目(41775028)
作者简介:  张兴赢,男,研究员,zxy@cma.gov.cn
引用本文:    
张兴赢,孟晓阳,周敏强,白文广,周丽花,胡玥明,余骁. 卫星高光谱大气CO2探测精度验证研究进展[J]. 气候变化研究进展, 2018, 14(6): 602-612.
Xing-Ying ZHANG,Xiao-Yang MENG,Min-Qiang ZHOU,Wen-Guang BAI,Li-Hua ZHOU,Yue-Ming HU,Xiao YU. Review of the validation of atmospheric CO2 from satellite hyper spectral remote sensing. Climate Change Research, 2018, 14(6): 602-612.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.070  或          http://www.climatechange.cn/CN/Y2018/V14/I6/602
Table 1  Parameters of CO2 observation satellites
Table 2  Comparison of the resolution of greenhouse gas observation satellite
[1] WMO. WMO greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2015[M]. WMO. 2016
[2] WMO. WMO greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on global observations through 2016[M]. WMO . 2017
[3] IPCC. Climate change 2014: synthesis report summary for policymakers chapter [M]. Cambridge: Cambridge University Press, 2015
[4] 王剑琼, 薛丽梅, 张国庆 , 等. 不同方法测量大气二氧化碳浓度的特征分析[J]. 青海环境, 2015 (2):75-78
doi: 10.3969/j.issn.1007-2454.2015.02.007
[5] Gloor M, Fan S M, Pacala S , et al. Optimal sampling of the atmosphere for purpose of inverse modeling: a model study[J]. Global Biogeochemical Cycles, 2000,14(1):407-428
doi: 10.1029/1999GB900052
[6] Masarie K A, Tans P P . Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record[J]. Journal of Geophysical Research, 1995,100(D6):11593
doi: 10.1029/95JD00859
[7] 张兴赢, 张鹏, 方宗义 , 等. 应用卫星遥感技术监测大气痕量气体的研究进展[J]. 气象, 2007 (7):3-14
[8] Engelen R J, Denning A S, Gurney K R , et al. Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras[J]. Journal of Geophysical Research, 2001,106(D17):20055-20068
doi: 10.1029/2001JD900223
[9] Wunch D, Toon G C, Blavier J F L , et al. The total carbon column observing network[J]. Philosophical Transactions of The Royal Society A-Mathematical Physical and Engineering Sciences, 2011,369(1943):2087-2112
doi: 10.1098/rsta.2010.0240 pmid: 21502178
[10] Kuze A, Suto H, Nakajima M , et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring[J]. Applied Optics, 2009,48(35):6716-6733
doi: 10.1364/AO.48.006716 pmid: 20011012
[11] 侯姗姗, 雷莉萍, 关贤华 . 温室气体观测卫星GOSAT及产品[J]. 遥感技术与应用, 2013,28(2):269-275
doi: 10.11873/j.issn.1004-0323.2013.2.269
[12] Crisp D, Atlas R M, Breon F M , et al. The Orbiting Carbon Observatory (OCO) mission[J]. Advances in Space Research, 2004,34(4):700-709
doi: 10.1016/j.asr.2003.08.062
[13] Thompson D R, Chris Benner D, Brown L R , et al. Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012,113(17):2265-2276
doi: 10.1016/j.jqsrt.2012.05.021
[14] Bi Y M, Wang Q, Yang Z D , et al. Advances on space-based hyper spectral remote sensing for atmospheric CO2 in near infrared band[J]. Chinese Optics, 2015,8(5):725-735
doi: 10.3788/co.
[15] 刘毅, 杨东旭, 蔡兆男 . 中国碳卫星大气CO2反演方法: GOSAT数据初步应用[J]. 科学通报, 2013 (11):996-999
[16] Platt U, Perner D, P?tz H W . Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption[J]. Journal of Geophysical Research Oceans, 1979,84(C10):6329-6335
doi: 10.1029/JC084iC10p06329
[17] Buchwitz M, Rozanov V V, Burrows J P . A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY[J]. Journal of Geophysical Research, 2000,D12(105):15231-15245
doi: 10.1029/2000JD900191
[18] Buchwitz M, de Beek R, No?l S, #magtechI# et al . Carbon monoxide, methane and carbon dioxide over China retrieved from SCIAMACHY/ENVISAT by WFM-DOAS[J]. Proceedings of the 2005 Dragon Symposium, 2006: 611
[19] Buchwitz M, Beek R D, L S N , et al. Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set[J]. Atmospheric Chemistry & Physics, 2005,5(12):3313-3329
[20] 霍彦峰 . 近红外波段超精细太阳光谱的地基观测及CO2反演[D]. 兰州: 兰州大学, 2015
[21] Barkley M P, Frie ?U, Monks P S . Measuring atmospheric CO2 from space using Full Spectral Initiation (FSI) WFM-DOAS[J]. Atmospheric Chemistry & Physics, 2006,6(11):2765-2807
doi: 10.5194/acp-6-3517-2006
[22] Schneising O, Buchwitz M, Reuter M , et al. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY[J]. Atmospheric Chemistry and Physics, 2011,11(6):2863-2880
doi: 10.5194/acp-11-2863-2011
[23] Oshchepkov S, Bril A, Yokota T . An improved photon path length probability density function: based radiative transfer model for space-based observation of greenhouse gases[J]. Journal of Geophysical Research, 2009,114(D19)
doi: 10.1029/2009JD012116
[24] Oshchepkov S, Bril A, Yokota T . PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space[J]. Journal of Geophysical Research Atmospheres, 2008,113(D23)
doi: 10.1029/2008JD010061
[25] Reuter M, Buchwitz M, Schneising O , et al. A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds[J]. Atmospheric Measurement Techniques, 2009,3(1):209-232
[26] Heymann J, Reuter M, Hilker M , et al. Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm[J]. Atmospheric Measurement Techniques Discussions, 2015,8(2):1787-1832
doi: 10.5194/amtd-8-1787-2015
[27] Yokota T, Yoshida Y, Eguchi N , et al. Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results[J]. Scientific Online Letters on the Atmosphere Sola, 2016,5(1):160-163
[28] Yoshida Y, Ota Y, Eguchi N , et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite[J]. Atmospheric Measurement Techniques, 2011,4(6):4791-4833
[29] Yoshida Y, Kikuchi N, Yokota T . On-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT[J]. Atmospheric Measurement Techniques, 2012,5(10):2515-2523
doi: 10.5194/amt-5-2515-2012
[30] Yoshida Y, Kikuchi N, Morino I , et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data[J]. Atmospheric Measurement Techniques, 2013,6(6):1533-1547
doi: 10.5194/amt-6-1533-2013
[31] Oshchepkov S, Bril A, Yokota T , et al. Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: algorithm intercomparison in the GOSAT data processing for CO2, retrievals over TCCON sites[J]. Journal of Geophysical Research-Atmospheres, 2013,118(3):1493-1512
doi: 10.1002/jgrd.50146
[32] O’Dell C W, Connor B, B?sch H , et al. The ACOS CO2 retrieval algorithm. Part 1: description and validation against synthetic observations[J]. Atmospheric Measurement Techniques Discussions, 2011,4(5):6097-6158
doi: 10.5194/amtd-4-6097-2011
[33] Crisp D, Fisher B M, O’Dell C , et al. The ACOS CO2 retrieval algorithm. Part II: global XCO2 data characterization[J]. Atmospheric Measurement Techniques, 2012,5(4):687-707
doi: 10.5194/amt-5-687-2012
[34] Butz A, Guerlet S, Hasekamp O , et al. Toward accurate CO2 and CH4 observations from GOSAT[J]. Geophysical Research Letters, 2011,38(14):130-137
doi: 10.1029/2011GL047888
[35] 杨东旭, 刘毅, 蔡兆男 , 等. 基于GOSAT反演的中国地区二氧化碳浓度时空分布研究[J]. 大气科学, 2016,40(3):541-550
doi: 10.3878/j.issn.1006-9895.1508.14121
[36] Zhou M Q, Zhang X Y, Wang P C , et al. XCO2 satellite retrieval experiments in short-wave infrared spectrum and ground-based validation[J]. Science China Earth Sciences, 2015,58(7):1191-1197
doi: 10.1007/s11430-015-5080-z
[37] B?sch H, Toon G C, Sen B , et al. Space-based near-infrared CO2, measurements: testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin[J]. Journal of Geophysical Research Atmospheres, 2006,111(D23):5495-5513
doi: 10.1029/2006JD007080
[38] Taylor T E, O’Dell C W, O’Brien D M , et al. Comparison of cloud-screening methods applied to GOSAT near-infrared spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(1):295-309
doi: 10.1109/TGRS.2011.2160270
[39] NASA. ACOS Level 2 standard product and lite data product data user’s guide,v7.3 [EB/OL]. 2017 [ 2018-05-11].
[40] Boesch H, Baker D, Connor B , et al. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission[J]. Remote Sensing, 2011,3(12):270-304
doi: 10.3390/rs3020270
[41] Cogan A J, Boesch H, Parker R J , et al. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): comparison with ground-based TCCON observations and GEOS-Chem model calculations[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D21):21301
doi: 10.1029/2012JD018087
[42] Butz A, Hasekamp O P, Frankenberg C , et al. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects[J]. Applied Optics, 2009,48(18):3322-3336
doi: 10.1364/AO.48.003322 pmid: 19543338
[43] Schepers D, Guerlet S, Butz A , et al. Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: performance comparison of proxy and physics retrieval algorithms[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D10):63-74
doi: 10.1029/2012JD017549
[44] 刘毅, 蔡兆男, 杨东旭 , 等. 中国二氧化碳科学实验卫星高光谱探测仪光谱指标影响分析及优化方案[J]. 科学通报, 2013 (27):2787-2789
[45] Yang D X, Zhang H F, Liu Y , et al. Monitoring carbon dioxide from space: retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China[J]. Advances in Atmospheric Sciences, 2017,34(8):965-976
doi: 10.1007/s00376-017-6221-4
[46] Yang Z, Toon G C, Margolis J S , et al. Atmospheric CO2 retrieved from ground-based near IR solar spectra[J]. Geophysical Research Letters, 2002,29(9):51-53
doi: 10.1029/2001GL014537
[47] Buschmann M, Deutscher N M, Sherlock V , et al. Retrieval of XCO2 from ground-based mid-infrared (NDACC) solar absorption spectra and comparison to TCCON[J]. Atmospheric Measurement Techniques, 2016,9(2):577-585
doi: 10.5194/amt-9-577-2016
[48] Kivi R, Heikkinen P . Fourier transform spectrometer measurements of column CO2 at Sodankyl?, Finland[J]. Geoscientific Instrumentation, Methods and Data Systems, 2016,5(2):271-279
doi: 10.5194/gi-5-271-2016
[49] Keppel-Aleks G, Wennberg P O, Schneider T . Sources of variations in total column carbon dioxide[J]. Atmospheric Chemistry & Physics, 2011,11(8):3581-3593
doi: 10.5194/acp-11-3581-2011
[50] Wunch D, Wennberg P O, Toon G C , et al. A method for evaluating bias in global measurements of CO2 total columns from space[J]. Atmospheric Chemistry and Physics Discussions, 2011,11(23):12317-12337
doi: 10.5194/acp-11-12317-2011
[51] Guerlet S, Butz A, Schepers D , et al. Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements[J]. Journal of Geophysical Research Atmospheres, 2013,118(10):4887-4905
doi: 10.1002/jgrd.50332
[52] Nguyen H, Osterman G, Wunch D , et al. A method for collocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON[J]. Atmospheric Measurement Techniques, 2014,7(2):1495-1533
doi: 10.5194/amtd-7-1495-2014
[53] 张淼, 张兴赢, 刘瑞霞 . 卫星高光谱大气CO2遥感反演精度地基验证研究[J]. 气候变化研究进展, 2014,10(6):427-432
doi: 10.3969/j.issn.1673-1719.2014.06.005
[54] Wunch D, Wennberg P O, Osterman G , et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON[J]. Atmospheric Measurement Techniques, 2017,10(6):1-45
doi: 10.5194/amt-10-1-2017
[55] Morino I, Uchino O, Inoue M , et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra[J]. Atmospheric Measurement Techniques Discussions, 2010,3(6):5613-5643
doi: 10.5194/amtd-3-5613-2010
[56] Inoue M, Morino I, Uchino O , et al. Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data[J]. Atmospheric Measurement Techniques, 2014,13(19):2987-3005
[57] Zhang H F, Chen B Z, Xu G , et al. Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals[J]. Science Bulletin, 2015,60(3):380-386
doi: 10.1007/s11434-014-0676-9
[58] Wang W, Tian Y, Liu C , et al. Investigating the performance of a greenhouse gas observatory in Hefei, China[J]. Atmospheric Measurement Techniques, 2017,10(7):2627-2643
doi: 10.5194/amt-10-2627-2017
[59] Bousquet P, Ciais P, Miller J B , et al. Contribution of anthropogenic and natural sources to atmospheric methane variability[J]. Nature, 2006,443(7110):439-443
doi: 10.1038/nature05132 pmid: 17006511
[60] 张兴赢, 张鹏, 廖宏 , 等. 地基傅立叶红外高光谱遥感观测大气成分平台建设及其反演技术研究[J]. 气象, 2009,35(1):9-17
doi: 10.7519/j.issn.1000-0526.2009.1.002
[61] Gisi M, Hase F, Dohe S , et al. XCO2-measurements with a tabletop FTS using solar absorption spectroscopy[J]. Atmospheric Measurement Techniques, 2012,5(11):2969-2980
doi: 10.5194/amt-5-2969-2012
[62] Klappenbach F, Bertleff M, Kostinek J , et al. Accurate mobile remote sensing of XCO2 and XCH4 latitudinal transects from aboard a research vessel[J]. Atmospheric Measurement Techniques, 2015,8(12):5023-5038
doi: 10.5194/amt-8-5023-2015
No related articles found!
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备10018055-1号
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn