Please wait a minute...
 
气候变化研究进展  2019, Vol. 15 Issue (1): 41-53    DOI: 10.12006/j.issn.1673-1719.2018.066
  气候变化影响 本期目录 | 过刊浏览 | 高级检索 |
太阳辐射管理地球工程对海洋酸化影响的模拟研究
温作龙,姜玖,曹龙
浙江大学地球科学学院大气科学系,杭州 310027
Simulated effects of solar geoengineering on ocean acidification
Zuo-Long WEN,Jiu JIANG,Long CAO
Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
下载:  HTML ( 8 )   PDF (4205KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

研究地球工程对海洋酸化的影响对于评估地球工程对全球气候和环境的影响有重要意义。文中使用中等复杂程度的地球系统模式,模拟了典型CO2高排放情景RCP8.5下,实施太阳辐射管理地球工程对海洋表面的pH和文石(碳酸钙的一种亚稳形态)饱和度的影响,并定量分析了各环境因子对海洋酸化影响的机理。模拟结果表明,在RCP8.5情景下,到2100年,相对于工业革命前水平,全球海洋表面平均pH下降了0.43,文石饱和度下降了1.77。相对于RCP8.5情景,2100年地球工程情景下全球海洋表面平均pH增加了0.003,而文石饱和度降低了0.16。地球工程通过改变溶解无机碳、碱度、温度等环境因子影响海洋酸化。相对于RCP8.5情景,实施地球工程引起的溶解无机碳浓度的增加使pH和文石饱和度均减小,碱度的增加使pH和文石饱和度均增大,温度的降低使pH增大而使文石饱和度减小。总体而言,太阳辐射管理地球工程可以降低全球温度,但无法减缓海洋酸化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温作龙
姜玖
曹龙
关键词:  地球工程  太阳辐射管理  海洋酸化  气候变化  地球系统模拟    
Abstract: 

To have a more complete evaluation of the solar geoengineering effect on global climate, it is of great importance to examine the effects of geoengineering on ocean acidification. In this study the UVic Earth System Model was used to simulate the effects of solar geoengineering on sea surface pH and aragonite (a metastable form of calcium carbonate) saturation (Ω). We run the UVic model from pre-industrial to the year 2100 under RCP8.5 scenario, and quantified the effects of individual environment factors on ocean acidification. The simulations show that by the year 2100, relative to pre-industrial levels, global mean sea surface pH would decrease by 0.43 and Ω state will decrease by 1.77. Relative to the RCP8.5 scenario without geoengineering, by the year 2100, solar geoengineering would increase sea surface pH by 0.003, but decrease Ω by 0.16. Relative to the RCP8.5 scenario without geoengineering, geoengineering-induced increase of dissolved inorganic carbon would decrease pH and Ω, but the increase of alkalinity would increase pH and Ω. Geoengineering-induced decrease of temperature would increase pH but decrease Ω. The net effect of solar geoengineering on pH and Ω is small. Our study indicates that solar geoengineering could cool the earth but fails to mitigate ocean acidification.

Key words:  Geoengineering    Solar radiation management    Ocean acidification    Climate change    Earth system simulation
收稿日期:  2018-05-02      修回日期:  2018-08-22           出版日期:  2019-01-30      发布日期:  2019-01-30      期的出版日期:  2019-01-30
基金资助: 国家重大基础科学研究计划项目(2015CB953601);国家自然科学基金项目(41675063);国家自然科学基金项目(41422503);中央高校基本科研业务费专项资金
作者简介:  温作龙,男,硕士研究生;曹龙(通信作者),男,教授, longcao@zju.edu.cn
引用本文:    
温作龙,姜玖,曹龙. 太阳辐射管理地球工程对海洋酸化影响的模拟研究[J]. 气候变化研究进展, 2019, 15(1): 41-53.
Zuo-Long WEN,Jiu JIANG,Long CAO. Simulated effects of solar geoengineering on ocean acidification. Climate Change Research, 2019, 15(1): 41-53.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.066  或          http://www.climatechange.cn/CN/Y2019/V15/I1/41
图1  通过碳酸盐化学OCMIP计算程序得到的以各环境因子为自变量、pH和Ω为因变量的函数图
图2  模式模拟的1990—1999年平均和GLODAP数据计算的各海洋碳酸盐变量随纬度-海洋深度的分布
图3  Hist+RCP8.5模拟试验和SRM模拟试验1800—2100年的结果 注:黑色虚线表示地球工程开始实施的年份(2020年)。
图4  两种试验模拟的2090—2100年平均结果及其差值
图5  两种试验模拟的2090—2100年平均相对于与1800—1810年平均结果各变量的变化及两种试验2090—2100年平均结果的差值
表1  模式模拟的1800—1810年平均与2090—2100年平均的海表溶解无机碳、碱度、温度、盐度的值
图6  由地球工程(SRM模拟实验)引起的海表各环境因子单独变化(相对于Hist+RCP8.5模拟试验)对pH和Ω的海表平均值的影响随时间的变化
表2  2090—2100年平均的由地球工程引起的海表各环境因子单独变化(相对于Hist+RCP8.5模拟试验)对pH和Ω的海表平均值的影响及其百分比(括号内数字),以及各环境因子同时变化的协同影响
图7  2090—2100年平均的由地球工程(SRM模拟实验)引起的海表各环境因子单独变化(相对于Hist+RCP8.5模拟试验)对海表pH和Ω空间分布的影响
图8  Hist+RCP8.5模拟试验和SRM模拟试验的1800—2100年北大西洋深水生成强度(NADW)随时间的变化
[1] Stocker F, Qin D H, Plattner G K , et al. Climate change 2013: the physical science basis[J]. Computational Geometry, 2013,18(2):95-123
doi: 10.1007/BF00524943
[2] Le Quéré C, Andrew R M, Canadell J G , et al. Global carbon budget 2016[J]. Earth System Science Data, 2016,8(2):605
doi: 10.5194/essd-8-605-2016
[3] Cao L, Caldeira K, Jain A K . Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation[J]. Geophysical Research Letters, 2007,34(5):89-103
[4] Zeebe R E, Wolf-Gladrow D A . CO2 in seawater: equilibrium, kinetics, isotopes [M]. Gulf Professional Publishing, 2001
[5] Sarmiento J L, Gruber N. Ocean Biogeochemical Dynamics [M]. Princeton: Princeton University Press, 2006: 325
[6] 鲍颖 . 全球碳循环过程的数值模拟与分析[D]. 青岛: 中国海洋大学, 2011
[7] Cao L, Caldeira K . Atmospheric CO2 stabilization and ocean acidification[J]. Geophysical Research Letters, 2008,35(19):524-532
doi: 10.1029/2008GL035072
[8] Steinacher M, Joos F, FröLicher T L , et al. Imminent ocean acidification projected with the NCAR global coupled carbon cycle-climate model[J]. Biogeosciences Discussions, 2008,5(6):4353-4393
doi: 10.5194/bg-6-515-2009
[9] Feely R A, Sabine C L, Lee K , et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science, 2004,305(5682):362
doi: 10.1126/science.1097329 pmid: 15256664
[10] Doney S C, Fabry V J, Feely R A , et al. Ocean acidification: the other CO2 problem[J]. Annual Review of Marine Science, 2009,1(1):169
doi: 10.1146/annurev.marine.010908.163834
[11] Fine M, Tchernov D . Scleractinian coral species survive and recover from decalcification[J]. Science, 2007,315(5820):1811
doi: 10.1126/science.1137094 pmid: 17395821
[12] Shepherd J G . Geoengineering the climate: science, governance and uncertainty [M]. Royal Society, 2009: ix
[13] 巢清尘, 张永香, 高翔 , 等. 巴黎协定:全球气候治理的新起点[J]. 气候变化研究进展, 2016,12(1):61-67
doi: 10.12006/j.issn.1673-1719.2015.243
[14] 陈迎, 辛源 . 1.5℃温控目标下地球工程问题剖析和应对政策建议[J]. 气候变化研究进展, 2017,13(4):337-345
doi: 10.12006/j.issn.1673-1719.2017.013
[15] Council N R. Climate intervention: carbon dioxide removal and reliable sequestration [M]. Washington, DC: The National Academies Press, 2015: 1-154
[16] Council N R. Climate intervention: reflecting sunlight to cool Earth [M]. Washington, DC: The National Academies Press, 2015: 260
[17] 张莹, 陈迎, 潘家华 . 气候工程的经济评估和治理核心问题探讨[J]. 气候变化研究进展, 2016,12(5):442-449
doi: 10.12006/j.issn.1673-1719.2016.056
[18] Keith D W . Geoengineering the climate: history and prospect[J]. Annual Review of Energy & the Environment, 2000,18(25):245-284
doi: 10.1146/annurev.energy.25.1.245
[19] 辛源 . 地球工程的研究进展简介与展望[J]. 气象科技进展, 2016,6(4):30-36
doi: 10.3969/j.issn.2095-1973.2016.04.004
[20] Vaughan N E, Lenton T M . A review of climate geoengineering proposals[J]. Climatic Change, 2011,109(3-4):745-790
doi: 10.1007/s10584-011-0027-7
[21] Angel R . Feasibility of cooling the Earth with a cloud of small spacecraft near the inner lagrange point (L1)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(46):17184-17189
doi: 10.1073/pnas.0608163103 pmid: 17085589
[22] Crutzen P J . Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?[J]. Climatic Change, 2006,77(3-4):211
doi: 10.1007/s10584-006-9101-y
[23] Stephen S, Graham S, John L . Sea-going hardware for the cloud albedo method of reversing global warming[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 2008,366(366):3989-4006
doi: 10.1098/rsta.2008.0136 pmid: 18757273
[24] Irvine P J, Ridgwell A, Lunt D J . Climatic effects of surface albedo geoengineering[J]. Journal of Geophysical Research Atmospheres, 2011,116(D24):24112
doi: 10.1029/2011JD016281
[25] Schmidt H, Alterskjær K, Karam D B , et al. Can a reduction of solar irradiance counteract CO2-induced climate change?: results from four Earth system models[J]. Earth System Dynamics Discussions, 2012,3(1):31-72
doi: 10.5194/esdd-3-31-2012
[26] Stjern C W, Muri H, Ahlm L , et al. Response to marine cloud brightening in a multi-model ensemble[J]. Atmospheric Chemistry & Physis, 2018,18(2):621-634
doi: 10.5194/acp-18-621-2018
[27] Tilmes S, Fasullo J, Lamarque J F , et al. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)[J]. Journal of Geophysical Research-atmospheres, 2013,118(19):11036-11058
doi: 10.1002/jgrd.50868
[28] Lunt D J, Ridgwell A, Valdes P J , et al. “Sunshade World”: a fully coupled GCM evaluation of the climatic impacts of geoengineering[J]. Geophysical Research Letters, 2008,35(12):L12710
doi: 10.1029/2008GL033674
[29] Cao L, Duan L, Bala G , et al. Simulated long-term climate response to idealized solar geoengineering[J]. Geophysical Research Letters, 2016,43(5):2209
doi: 10.1002/2016GL068079
[30] Matthews H D, Cao L, Caldeira K . Sensitivity of ocean acidification to geoengineered climate stabilization[J]. Geophysical Research Letters, 2009,36(10):92-103
[31] Tjiputra J F, Grini A, Lee H . Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles[J]. Journal of Geophysical Research Biogeosciences, 2015,121(1):2-15
doi: 10.1002/2015JG003045
[32] Weaver A J, Eby M, Wiebe E C , et al. The UVic Earth system climate model: model description, climatology, and applications to past, present and future climates[J]. Atmosphere-Ocean, 2001,39(4):361-428
doi: 10.1080/07055900.2001.9649686
[33] Orr J, Najjar R, Sabine C , et al. Abiotic-HOWTO, internal OCMIP report [R]. Saclay: LSCE/CEA, 1999: 29
[34] Meissner K J, Weaver A J, Matthews H D , et al. The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model[J]. Climate Dynamics, 2003,21(7):515-537
doi: 10.1007/s00382-003-0352-2
[35] Schmittner A, Oschlies A, Matthews H D , et al. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD[J]. Global Biogeochemical Cycles, 2008,22(1):1-21
[36] Cao L, Zhang H . The role of biological rates in the simulated warming effect on oceanic CO2 uptake[J]. Journal of Geophysical Research Biogeosciences, 2017,122(5):1-7
doi: 10.1002/jgrg.20645
[37] Friedlingstein P, Cox P, Betts R , et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison[J]. Journal of Climate, 2006,19(14):3337-3353
doi: 10.1175/JCLI3800.1
[38] Keller D P, Feng E Y, Oschlies A . Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario[J]. Nature Communications, 2014,5(2):3304
doi: 10.1038/ncomms4304 pmid: 3948393
[39] Cheng W, Moore J C, Cao L , et al. Simulated climate effects of desert irrigation geoengineering[J]. Scientific Reports, 2017,7:46443
doi: 10.1038/srep46443 pmid: 5394461
[40] Matthews H D, Caldeira K . Transient climate-carbon simulations of planetary geoengineering[J]. Proceedings of the Wational Academy of Science, 2007,104(24):9949-9954
doi: 10.1073/pnas.0700419104 pmid: 17548822
[41] Niemeier U, Timmreck C . What is the limit of climate engineering by stratospheric injection of SO2?[J]. Atmospheric Chemistry & Physics, 2015,15(16):9129-9141
doi: 10.5194/acp-15-9129-2015
[42] Key R M, Kozyr A, Sabine C L , et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP)[J]. Global Biogeochemical Cycles, 2004: 357-370
doi: 10.1029/2004GB002247
[43] Zeebe R E . History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification[J]. Annual Review of Earth & Planetary Sciences, 2012,40(1):141-165
[44] Cao L, Wang S, Zheng M , et al. Sensitivity of ocean chemistry and oxygen change to the uncertainty in climate change[J]. Environmental Research Letters, 2014,9(6):064005
doi: 10.1088/1748-9326/9/6/064005
[45] Cao L . The effects of solar radiation management on the carbon cycle[J]. Current Climate Change Reports, 2018: 1-10
[1] 陈德亮 秦大河 效存德 苏勃. 气候恢复力及其在极端天气气候灾害管理中的应用[J]. 气候变化研究进展, 2019, 15(2): 167-177.
[2] 章梦杰 郭家力 林伟 郭靖 舒章康 李英海 张静文. 气候变化对水文季节性迁移的影响:以水库汛期分期和极值降水为例[J]. 气候变化研究进展, 2019, 15(2): 158-166.
[3] 郭飞燕,綦东菊,周斌,薛允传. 青岛地区气候变化对动物物候变化的影响研究[J]. 气候变化研究进展, 2019, 15(1): 62-73.
[4] 洪祎君, 崔惠娟, 王芳, 葛全胜. 基于发展中国家自主贡献文件的资金需求评估[J]. 气候变化研究进展, 2018, 14(6): 621-631.
[5] 王利宁, 杨雷, 陈文颖, 单葆国, 张成龙, 尹硕. 国家自主决定贡献的减排力度评价[J]. 气候变化研究进展, 2018, 14(6): 613-620.
[6] 范志欣,方修琦,苏筠. 全球碳排放格网化格局的变化[J]. 气候变化研究进展, 2018, 14(5): 505-512.
[7] 王正,支蓉,封国林,李淑萍. 典型场选取对多要素气候态相似季节划分的影响[J]. 气候变化研究进展, 2018, 14(4): 350-369.
[8] 李宁,白蕤,李玮,张蕾,易克贤,陈淼,陈歆. 未来气候变化背景下我国橡胶树寒害事件的变化特征[J]. 气候变化研究进展, 2018, 14(4): 402-410.
[9] 许光清,董小琦. 企业气候变化意识及应对措施调查研究[J]. 气候变化研究进展, 2018, 14(4): 429-436.
[10] 陈艺丹,蔡闻佳,王灿. 国家自主决定贡献的特征研究[J]. 气候变化研究进展, 2018, 14(3): 295-302.
[11] 郑锦涛,陈伏龙,张鑫厚,龙爱华,廖欢. 基于GAMLSS模型的玛纳斯河设计年径流分析[J]. 气候变化研究进展, 2018, 14(3): 257-265.
[12] 王胜,许红梅,王德燕,宋阿伟,段春锋,何冬燕. 基于CMIP5模式安徽省植被净初级生产力预估[J]. 气候变化研究进展, 2018, 14(3): 266-274.
[13] 艾婉秀,王长科,吕明辉,赵琳. 中国公众对气候变化和气象灾害认知的社会性别差异[J]. 气候变化研究进展, 2018, 14(3): 318-324.
[14] 张豪, 谭静, 张建华. 气候变化与城市全要素生产率:理论与实证[J]. 气候变化研究进展, 2018, 14(2): 165-174.
[15] 侯志瑞, 陈琼, 周强, 刘峰贵, 马伟东. 青藏高原东北缘山地农户对气候变化的感知及适应策略——以湟水中游为例[J]. 气候变化研究进展, 2018, 14(2): 175-181.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备10018055-1号
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn