[1] | Zhao M S, Running S W.Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 329(5994): 940-943 | [2] | Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300(5625): 1560-1563 | [3] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 | [4] | Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241): 1009-1013 | [5] | Beer C, Reichstein M, Tomelleri E, et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate[J]. Science, 2010, 329(5993): 834-838 | [6] | Le Quéré C, Moriarty R, Andrew R M, et al. Global carbon budget 2015[J]. Earth System Science Data, 2015, 7(2): 349-396 | [7] | 于贵瑞, 方华军, 伏玉玲, 等. 区域尺度陆地生态系统碳收支及其循环过程研究进展[J]. 生态学报, 2011 (19): 5449-5459 | [8] | 方精云, 柯金虎, 唐志尧, 等. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报, 2001 (4): 414-419 | [9] | Raupach M R, Canadell J G, Le Quéré C.Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction[J]. Biogeosciences, 2008, 5(6): 1601-1613 | [10] | Prentice I C, Heimann M, Sitch S.The carbon balance of the terrestrial biosphere: ecosystem models and atmospheric observations[J]. Ecological Applications, 2000, 10(6): 1553-1573 | [11] | Sitch S, Smith B, Prentice IC, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 2003, 9(2): 161-185 | [12] | 高翔. 《巴黎协定》与国际减缓气候变化合作模式的变迁[J]. 气候变化研究进展, 2016, 12(2): 83-91 | [13] | 巢清尘, 张永香, 高翔, 等. 巴黎协定:全球气候治理的新起点[J]. 气候变化研究进展, 2016, 12(1): 61-67 | [14] | 赵宗慈, 罗勇, 黄建斌. IPCC三个特别报告正在准备中[J]. 气候变化研究进展. 2016, 12(5): 465-466 | [15] | 陈敏鹏, 张宇丞, 李波, 等.《巴黎协定》适应和损失损害内容的解读和对策[J]. 气候变化研究进展, 2016, 12(3): 251-257 | [16] | 薄燕. 《巴黎协定》坚持的“共区原则”与国际气候治理机制的变迁[J]. 气候变化研究进展, 2016, 12(3): 243-250 | [17] | Jones P W.First- and second-order conservative remapping schemes for grids in spherical coordinates[J]. Monthly Weather Review, 1999,127(9): 2204-2210 | [18] | Le Bauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379 | [19] | Zhao M S, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global dataset[J]. Remote Sensing Environment, 2005, 95(2): 164-176 | [20] | Schimel D, Stephens B B, Fisher J B.Effect of increasing CO2 on the terrestrial carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2): 436-441 | [21] | Zhu Z C, Piao S L, Myneni R B, et al. Greening of the earth and its drivers[J]. Nature Climate Change, 2016, 6(8): 791-795 | [22] | Anav A, Friedlingstein P, Kidston M, et al. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models[J]. Joumal of Climate, 2013, 26(18): 6801-6843 | [23] | Smith W K, Reed S C, Cleveland C C, et al. Large divergence of satellite and earth system model estimates of global terrestrial CO2 fertilization[J]. Nature Climate Change, 2015, 6(3): 306-310 | [24] | Norby R J, Warren J M, Iversen C M, et al. CO2 enhancement of forest productivity constrained by limited nitrogen availability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19368-19373 | [25] | Norby R J, De Lucia E H, Gielen B, et al. Forest response to elevated CO2 is conserved across a broad range of productivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(50): 18052-18056 | [26] | Foley J A, Defries R, Asner G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734): 570-574 | [27] | Deng L, Liu G B, Shangguan Z P.Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ program: a synthesis[J]. Global Change Biology, 2014, 20(11): 3544-3556 | [28] | Sitch S, Cox P M, Collins W J, et al. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink[J]. Nature, 2007, 448(7155): 791-794 | [29] | Ashmore M R.Assessing the future global impacts of ozone on vegetation[J]. Plant, Cell & Environment, 2005, 28(8): 949-964 | [30] | Anderegg W R L, Hicke J A, Fisher R A, et al. Tree mortality from drought, insects, and their interactions in a changing climate[J]. New Phytologist, 2015, 208(3): 674-683 | [31] | Zeng N, Zhao F, Collatz G J, et al. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude[J]. Nature, 2014, 515(7527): 394-397 | [32] | Piao S L, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends[J]. Global Change Biology, 2013, 19(7): 2117-2132 |
|